import json import random import httpx import polars as pl from huggingface_hub import list_datasets from tqdm import tqdm from tqdm.asyncio import tqdm_asyncio # Initialize the HTTP client client = httpx.AsyncClient(timeout=60, http2=True) async def generate_dataset_prompt(dataset_name, num_rows=2): try: base_url = "https://datasets-server.huggingface.co" # Get splits and configs splits_url = f"{base_url}/splits?dataset={dataset_name}" splits_response = await client.get(splits_url) splits_data = splits_response.json() if not splits_data.get("splits"): return None # Get the first config and split first_split = splits_data["splits"][0] config_name = first_split["config"] split_name = first_split["split"] # Get dataset info for the specific config info_url = f"{base_url}/info?dataset={dataset_name}&config={config_name}" info_response = await client.get(info_url) info_data = info_response.json() # Get first rows for the specific config and split first_rows_url = f"{base_url}/first-rows?dataset={dataset_name}&config={config_name}&split={split_name}" first_rows_response = await client.get(first_rows_url) first_rows_data = first_rows_response.json() # Get size information size_url = f"{base_url}/size?dataset={dataset_name}" size_response = await client.get(size_url) size_data = size_response.json() # Extract relevant information dataset_info = info_data.get("dataset_info", {}) features = dataset_info.get("features", {}) splits = dataset_info.get("splits", {}) # Calculate total examples and size total_examples = sum(split.get("num_examples", 0) for split in splits.values()) total_size = ( size_data.get("size", {}) .get("dataset", {}) .get("num_bytes_original_files", 0) ) # Format features def format_feature(name, details): if isinstance(details, dict): feature_type = details.get( "dtype", details.get("_type", "unknown type") ) elif isinstance(details, list): feature_type = "list" else: feature_type = str(type(details).__name__) return f"- {name} ({feature_type})" formatted_features = "\n".join( format_feature(name, details) for name, details in features.items() ) # Format sample data (specified number of rows) sample_data = json.dumps(first_rows_data.get("rows", [])[:num_rows], indent=2) # Create the formatted prompt prompt = f""" Dataset: "{dataset_name}" Features: {formatted_features} Splits and Configs: {', '.join(f"{split['config']}/{split['split']}" for split in splits_data['splits'])} Size Statistics: Total Examples: {total_examples} Split Sizes: {', '.join(f"{split}: {info['num_examples']}" for split, info in splits.items())} Data Sample ({num_rows} rows out of {total_examples} total): {sample_data} """ return prompt.strip() except Exception as e: print(f"Error for {dataset_name}: {e}") return None async def process_batch(batch): results = await tqdm_asyncio.gather( *[generate_dataset_prompt(dataset) for dataset in batch], leave=False ) return [ (dataset_id, prompt) for dataset_id, prompt in zip(batch, results) if prompt is not None ] async def prep_data(sample_size=200_000, min_likes=1): # Load the dataset containing dataset IDs df = pl.read_parquet( "hf://datasets/davanstrien/dataset-viewer-descriptions-processed/data/train-00000-of-00001.parquet" ) in_train_or_test = set(df["dataset_id"].unique().to_list()) # Get all datasets datasets = [ dataset for dataset in list_datasets() if dataset.id not in in_train_or_test ] # filter to datasets with 1 or more likes if min_likes: datasets = [dataset for dataset in datasets if dataset.likes >= min_likes] datasets = [dataset.id for dataset in datasets] # Sample datasets (adjust the number as needed) datasets = random.sample(datasets, min(sample_size, len(datasets))) # Process datasets in batches of 100 batch_size = 500 all_results = [] for i in tqdm(range(0, len(datasets), batch_size), desc="Processing batches"): batch = datasets[i : i + batch_size] batch_results = await process_batch(batch) all_results.extend(batch_results) # Optional: Save intermediate results if len(all_results) % 1000 == 0: intermediate_df = pl.DataFrame( { "dataset_id": [row[0] for row in all_results], "formatted_prompt": [row[1] for row in all_results], } ) intermediate_df.write_parquet( f"dataset_prompts_intermediate_{len(all_results)}.parquet" ) return pl.DataFrame( { "dataset_id": [row[0] for row in all_results], "formatted_prompt": [row[1] for row in all_results], } )