Spaces:
Runtime error
Runtime error
File size: 16,552 Bytes
9e08039 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 |
from fastai.core import *
from fastai.vision import *
from matplotlib.axes import Axes
from matplotlib.figure import Figure
from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas
from .filters import IFilter, MasterFilter, ColorizerFilter
from .generators import gen_inference_deep, gen_inference_wide
# from tensorboardX import SummaryWriter
from scipy import misc
from PIL import Image
# import ffmpeg
# import youtube_dl
import gc
import requests
from io import BytesIO
import base64
# from IPython import display as ipythondisplay
# from IPython.display import HTML
# from IPython.display import Image as ipythonimage
import cv2
# # adapted from https://www.pyimagesearch.com/2016/04/25/watermarking-images-with-opencv-and-python/
# def get_watermarked(pil_image: Image) -> Image:
# try:
# image = cv2.cvtColor(np.array(pil_image), cv2.COLOR_RGB2BGR)
# (h, w) = image.shape[:2]
# image = np.dstack([image, np.ones((h, w), dtype="uint8") * 255])
# pct = 0.05
# full_watermark = cv2.imread(
# './resource_images/watermark.png', cv2.IMREAD_UNCHANGED
# )
# (fwH, fwW) = full_watermark.shape[:2]
# wH = int(pct * h)
# wW = int((pct * h / fwH) * fwW)
# watermark = cv2.resize(full_watermark, (wH, wW), interpolation=cv2.INTER_AREA)
# overlay = np.zeros((h, w, 4), dtype="uint8")
# (wH, wW) = watermark.shape[:2]
# overlay[h - wH - 10 : h - 10, 10 : 10 + wW] = watermark
# # blend the two images together using transparent overlays
# output = image.copy()
# cv2.addWeighted(overlay, 0.5, output, 1.0, 0, output)
# rgb_image = cv2.cvtColor(output, cv2.COLOR_BGR2RGB)
# final_image = Image.fromarray(rgb_image)
# return final_image
# except:
# # Don't want this to crash everything, so let's just not watermark the image for now.
# return pil_image
class ModelImageVisualizer:
def __init__(self, filter: IFilter, results_dir: str = None):
self.filter = filter
self.results_dir = None if results_dir is None else Path(results_dir)
self.results_dir.mkdir(parents=True, exist_ok=True)
def _clean_mem(self):
torch.cuda.empty_cache()
# gc.collect()
def _open_pil_image(self, path: Path) -> Image:
return PIL.Image.open(path).convert('RGB')
def _get_image_from_url(self, url: str) -> Image:
response = requests.get(url, timeout=30, headers={'Accept': '*/*;q=0.8'})
img = PIL.Image.open(BytesIO(response.content)).convert('RGB')
return img
def plot_transformed_image_from_url(
self,
url: str,
path: str = 'test_images/image.png',
results_dir:Path = None,
figsize: (int, int) = (20, 20),
render_factor: int = None,
display_render_factor: bool = False,
compare: bool = False,
post_process: bool = True,
watermarked: bool = True,
) -> Path:
img = self._get_image_from_url(url)
img.save(path)
return self.plot_transformed_image(
path=path,
results_dir=results_dir,
figsize=figsize,
render_factor=render_factor,
display_render_factor=display_render_factor,
compare=compare,
post_process = post_process,
watermarked=watermarked,
)
def plot_transformed_image(
self,
path: str,
results_dir:Path = None,
figsize: (int, int) = (20, 20),
render_factor: int = None,
display_render_factor: bool = False,
compare: bool = False,
post_process: bool = True,
watermarked: bool = True,
) -> Path:
path = Path(path)
if results_dir is None:
results_dir = Path(self.results_dir)
result = self.get_transformed_image(
path, render_factor, post_process=post_process,watermarked=watermarked
)
orig = self._open_pil_image(path)
if compare:
self._plot_comparison(
figsize, render_factor, display_render_factor, orig, result
)
else:
self._plot_solo(figsize, render_factor, display_render_factor, result)
orig.close()
result_path = self._save_result_image(path, result, results_dir=results_dir)
result.close()
return result_path
def plot_transformed_pil_image(
self,
input_image: Image,
figsize: (int, int) = (20, 20),
render_factor: int = None,
display_render_factor: bool = False,
compare: bool = False,
post_process: bool = True,
) -> Image:
result = self.get_transformed_pil_image(
input_image, render_factor, post_process=post_process
)
if compare:
self._plot_comparison(
figsize, render_factor, display_render_factor, input_image, result
)
else:
self._plot_solo(figsize, render_factor, display_render_factor, result)
return result
def _plot_comparison(
self,
figsize: (int, int),
render_factor: int,
display_render_factor: bool,
orig: Image,
result: Image,
):
fig, axes = plt.subplots(1, 2, figsize=figsize)
self._plot_image(
orig,
axes=axes[0],
figsize=figsize,
render_factor=render_factor,
display_render_factor=False,
)
self._plot_image(
result,
axes=axes[1],
figsize=figsize,
render_factor=render_factor,
display_render_factor=display_render_factor,
)
def _plot_solo(
self,
figsize: (int, int),
render_factor: int,
display_render_factor: bool,
result: Image,
):
fig, axes = plt.subplots(1, 1, figsize=figsize)
self._plot_image(
result,
axes=axes,
figsize=figsize,
render_factor=render_factor,
display_render_factor=display_render_factor,
)
def _save_result_image(self, source_path: Path, image: Image, results_dir = None) -> Path:
if results_dir is None:
results_dir = Path(self.results_dir)
result_path = results_dir / source_path.name
image.save(result_path)
return result_path
def get_transformed_image(
self, path: Path, render_factor: int = None, post_process: bool = True,
watermarked: bool = True,
) -> Image:
self._clean_mem()
orig_image = self._open_pil_image(path)
filtered_image = self.filter.filter(
orig_image, orig_image, render_factor=render_factor,post_process=post_process
)
# if watermarked:
# return get_watermarked(filtered_image)
return filtered_image
def get_transformed_pil_image(
self, input_image: Image, render_factor: int = None, post_process: bool = True,
) -> Image:
self._clean_mem()
filtered_image = self.filter.filter(
input_image, input_image, render_factor=render_factor,post_process=post_process
)
return filtered_image
def _plot_image(
self,
image: Image,
render_factor: int,
axes: Axes = None,
figsize=(20, 20),
display_render_factor = False,
):
if axes is None:
_, axes = plt.subplots(figsize=figsize)
axes.imshow(np.asarray(image) / 255)
axes.axis('off')
if render_factor is not None and display_render_factor:
plt.text(
10,
10,
'render_factor: ' + str(render_factor),
color='white',
backgroundcolor='black',
)
def _get_num_rows_columns(self, num_images: int, max_columns: int) -> (int, int):
columns = min(num_images, max_columns)
rows = num_images // columns
rows = rows if rows * columns == num_images else rows + 1
return rows, columns
# class VideoColorizer:
# def __init__(self, vis: ModelImageVisualizer):
# self.vis = vis
# workfolder = Path('./video')
# self.source_folder = workfolder / "source"
# self.bwframes_root = workfolder / "bwframes"
# self.audio_root = workfolder / "audio"
# self.colorframes_root = workfolder / "colorframes"
# self.result_folder = workfolder / "result"
# def _purge_images(self, dir):
# for f in os.listdir(dir):
# if re.search('.*?\.jpg', f):
# os.remove(os.path.join(dir, f))
# def _get_fps(self, source_path: Path) -> str:
# probe = ffmpeg.probe(str(source_path))
# stream_data = next(
# (stream for stream in probe['streams'] if stream['codec_type'] == 'video'),
# None,
# )
# return stream_data['avg_frame_rate']
# def _download_video_from_url(self, source_url, source_path: Path):
# if source_path.exists():
# source_path.unlink()
# ydl_opts = {
# 'format': 'bestvideo[ext=mp4]+bestaudio[ext=m4a]/mp4',
# 'outtmpl': str(source_path),
# 'retries': 30,
# 'fragment-retries': 30
# }
# with youtube_dl.YoutubeDL(ydl_opts) as ydl:
# ydl.download([source_url])
# def _extract_raw_frames(self, source_path: Path):
# bwframes_folder = self.bwframes_root / (source_path.stem)
# bwframe_path_template = str(bwframes_folder / '%5d.jpg')
# bwframes_folder.mkdir(parents=True, exist_ok=True)
# self._purge_images(bwframes_folder)
# ffmpeg.input(str(source_path)).output(
# str(bwframe_path_template), format='image2', vcodec='mjpeg', qscale=0
# ).run(capture_stdout=True)
# def _colorize_raw_frames(
# self, source_path: Path, render_factor: int = None, post_process: bool = True,
# watermarked: bool = True,
# ):
# colorframes_folder = self.colorframes_root / (source_path.stem)
# colorframes_folder.mkdir(parents=True, exist_ok=True)
# self._purge_images(colorframes_folder)
# bwframes_folder = self.bwframes_root / (source_path.stem)
# for img in progress_bar(os.listdir(str(bwframes_folder))):
# img_path = bwframes_folder / img
# if os.path.isfile(str(img_path)):
# color_image = self.vis.get_transformed_image(
# str(img_path), render_factor=render_factor, post_process=post_process,watermarked=watermarked
# )
# color_image.save(str(colorframes_folder / img))
# def _build_video(self, source_path: Path) -> Path:
# colorized_path = self.result_folder / (
# source_path.name.replace('.mp4', '_no_audio.mp4')
# )
# colorframes_folder = self.colorframes_root / (source_path.stem)
# colorframes_path_template = str(colorframes_folder / '%5d.jpg')
# colorized_path.parent.mkdir(parents=True, exist_ok=True)
# if colorized_path.exists():
# colorized_path.unlink()
# fps = self._get_fps(source_path)
# ffmpeg.input(
# str(colorframes_path_template),
# format='image2',
# vcodec='mjpeg',
# framerate=fps,
# ).output(str(colorized_path), crf=17, vcodec='libx264').run(capture_stdout=True)
# result_path = self.result_folder / source_path.name
# if result_path.exists():
# result_path.unlink()
# # making copy of non-audio version in case adding back audio doesn't apply or fails.
# shutil.copyfile(str(colorized_path), str(result_path))
# # adding back sound here
# audio_file = Path(str(source_path).replace('.mp4', '.aac'))
# if audio_file.exists():
# audio_file.unlink()
# os.system(
# 'ffmpeg -y -i "'
# + str(source_path)
# + '" -vn -acodec copy "'
# + str(audio_file)
# + '"'
# )
# if audio_file.exists:
# os.system(
# 'ffmpeg -y -i "'
# + str(colorized_path)
# + '" -i "'
# + str(audio_file)
# + '" -shortest -c:v copy -c:a aac -b:a 256k "'
# + str(result_path)
# + '"'
# )
# print('Video created here: ' + str(result_path))
# return result_path
# def colorize_from_url(
# self,
# source_url,
# file_name: str,
# render_factor: int = None,
# post_process: bool = True,
# watermarked: bool = True,
# ) -> Path:
# source_path = self.source_folder / file_name
# self._download_video_from_url(source_url, source_path)
# return self._colorize_from_path(
# source_path, render_factor=render_factor, post_process=post_process,watermarked=watermarked
# )
# def colorize_from_file_name(
# self, file_name: str, render_factor: int = None, watermarked: bool = True, post_process: bool = True,
# ) -> Path:
# source_path = self.source_folder / file_name
# return self._colorize_from_path(
# source_path, render_factor=render_factor, post_process=post_process,watermarked=watermarked
# )
# def _colorize_from_path(
# self, source_path: Path, render_factor: int = None, watermarked: bool = True, post_process: bool = True
# ) -> Path:
# if not source_path.exists():
# raise Exception(
# 'Video at path specfied, ' + str(source_path) + ' could not be found.'
# )
# self._extract_raw_frames(source_path)
# self._colorize_raw_frames(
# source_path, render_factor=render_factor,post_process=post_process,watermarked=watermarked
# )
# return self._build_video(source_path)
# def get_video_colorizer(render_factor: int = 21) -> VideoColorizer:
# return get_stable_video_colorizer(render_factor=render_factor)
# def get_artistic_video_colorizer(
# root_folder: Path = Path('./'),
# weights_name: str = 'ColorizeArtistic_gen',
# results_dir='result_images',
# render_factor: int = 35
# ) -> VideoColorizer:
# learn = gen_inference_deep(root_folder=root_folder, weights_name=weights_name)
# filtr = MasterFilter([ColorizerFilter(learn=learn)], render_factor=render_factor)
# vis = ModelImageVisualizer(filtr, results_dir=results_dir)
# return VideoColorizer(vis)
# def get_stable_video_colorizer(
# root_folder: Path = Path('./'),
# weights_name: str = 'ColorizeVideo_gen',
# results_dir='result_images',
# render_factor: int = 21
# ) -> VideoColorizer:
# learn = gen_inference_wide(root_folder=root_folder, weights_name=weights_name)
# filtr = MasterFilter([ColorizerFilter(learn=learn)], render_factor=render_factor)
# vis = ModelImageVisualizer(filtr, results_dir=results_dir)
# return VideoColorizer(vis)
def get_image_colorizer(
root_folder: Path = Path('./'), render_factor: int = 35, artistic: bool = True
) -> ModelImageVisualizer:
if artistic:
return get_artistic_image_colorizer(root_folder=root_folder, render_factor=render_factor)
else:
return get_stable_image_colorizer(root_folder=root_folder, render_factor=render_factor)
def get_stable_image_colorizer(
root_folder: Path = Path('./'),
weights_name: str = 'ColorizeStable_gen',
results_dir='result_images',
render_factor: int = 35
) -> ModelImageVisualizer:
learn = gen_inference_wide(root_folder=root_folder, weights_name=weights_name)
filtr = MasterFilter([ColorizerFilter(learn=learn)], render_factor=render_factor)
vis = ModelImageVisualizer(filtr, results_dir=results_dir)
return vis
def get_artistic_image_colorizer(
root_folder: Path = Path('./'),
weights_name: str = 'ColorizeArtistic_gen',
results_dir='result_images',
render_factor: int = 35
) -> ModelImageVisualizer:
learn = gen_inference_deep(root_folder=root_folder, weights_name=weights_name)
filtr = MasterFilter([ColorizerFilter(learn=learn)], render_factor=render_factor)
vis = ModelImageVisualizer(filtr, results_dir=results_dir)
return vis |