davidberenstein1957's picture
Update app.py
a74ee73 verified
raw
history blame
4.33 kB
#!/usr/bin/env python
import os
from threading import Thread
from typing import Iterator
import gradio as gr
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
from chat_interface_preference import ChatInterface
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "8192"))
if torch.cuda.is_available():
model_id = "meta-llama/Meta-Llama-3.1-8B-Instruct"
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_id)
style = "<style>.user-message,.system-message{display:flex;margin:10px}.user-message .message-content{background-color:#c2e3f7;color:#000}.system-message .message-content{background-color:#f5f5f5;color:#000}.message-content{padding:10px;border-radius:10px;max-width:70%;word-wrap:break-word}.container{display:flex;justify-content:space-between}.column{width:48%}</style>"
@spaces.GPU
def generate(
message: str,
chat_history: list[tuple[str, str]],
max_new_tokens: int = 1024,
temperature: float = 0.06,
top_p: float = 0.95,
top_k: int = 40,
repetition_penalty: float = 1.2,
) -> Iterator[str]:
conversation = []
for user, assistant in chat_history:
conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
conversation.append({"role": "user", "content": message})
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt")
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
input_ids = input_ids.to(model.device)
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
{"input_ids": input_ids},
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=True,
top_p=top_p,
top_k=top_k,
temperature=temperature,
num_beams=1,
repetition_penalty=repetition_penalty,
)
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
outputs = []
for text in streamer:
outputs.append(text)
yield "".join(outputs)
chat_interface = ChatInterface(
fn=generate,
prefence_techniques="dpo",
min_turns=1,
max_turns=10,
repo_id="llm-human-feedback-collector-chat-interface-dpo",
chatbot=gr.Chatbot(
height=450, label="Meta-Llama-3.1-8B-Instruct", show_share_button=True
),
css=style,
cache_examples=False,
additional_inputs=[
gr.Slider(
label="Max new tokens",
minimum=1,
maximum=MAX_MAX_NEW_TOKENS,
step=1,
value=DEFAULT_MAX_NEW_TOKENS,
),
gr.Slider(
label="Temperature",
minimum=0.05,
maximum=1.2,
step=0.05,
value=0.2,
),
gr.Slider(
label="Top-p (nucleus sampling)",
minimum=0.05,
maximum=1.0,
step=0.05,
value=0.9,
),
gr.Slider(
label="Top-k",
minimum=1,
maximum=1000,
step=1,
value=50,
),
gr.Slider(
label="Repetition penalty",
minimum=1.0,
maximum=2.0,
step=0.05,
value=1.2,
),
],
examples=[
["""What word doesn't make sense in this row: "car, airplane, lama, bus"?"""],
["Write a news article about the usage of Lama's by the CSI"],
["What are great things cook when getting started with Asian cooking?"],
["Who was Anthony Bourdain?"],
],
title="💪🏽🦾 LLM human-feedback collector ChatInterface (DPO) 🦾💪🏽",
description="""This is an adaptation of the gr.ChatInferface which allows for human feedback collection for SFT, DPO and KTO.""",
)
with gr.Blocks(css="style.css") as demo:
chat_interface.render()
if __name__ == "__main__":
demo.queue(max_size=20).launch()