#!/usr/bin/env python import os from threading import Thread from typing import Iterator import gradio as gr import spaces import torch from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer from chat_interface_preference import ChatInterface MAX_MAX_NEW_TOKENS = 2048 DEFAULT_MAX_NEW_TOKENS = 1024 MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "8192")) if torch.cuda.is_available(): model_id = "meta-llama/Meta-Llama-3-8B-Instruct" model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, device_map="auto") tokenizer = AutoTokenizer.from_pretrained(model_id) style = "" @spaces.GPU def generate( message: str, chat_history: list[tuple[str, str]], max_new_tokens: int = 1024, temperature: float = 0.06, top_p: float = 0.95, top_k: int = 40, repetition_penalty: float = 1.2, ) -> Iterator[str]: conversation = [] for user, assistant in chat_history: conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}]) conversation.append({"role": "user", "content": message}) input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt") if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.") input_ids = input_ids.to(model.device) streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True) generate_kwargs = dict( {"input_ids": input_ids}, streamer=streamer, max_new_tokens=max_new_tokens, do_sample=True, top_p=top_p, top_k=top_k, temperature=temperature, num_beams=1, repetition_penalty=repetition_penalty, ) t = Thread(target=model.generate, kwargs=generate_kwargs) t.start() outputs = [] for text in streamer: outputs.append(text) yield "".join(outputs) chat_interface = ChatInterface( fn=generate, prefence_techniques="dpo", min_turns=1, max_turns=10, repo_id="llm-human-feedback-collector-chat-interface-dpo", chatbot=gr.Chatbot( height=450, label="Meta-Llama-3-8B-Instruct", show_share_button=True ), css=style, cache_examples=False, additional_inputs=[ gr.Slider( label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS, ), gr.Slider( label="Temperature", minimum=0.05, maximum=1.2, step=0.05, value=0.2, ), gr.Slider( label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9, ), gr.Slider( label="Top-k", minimum=1, maximum=1000, step=1, value=50, ), gr.Slider( label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2, ), ], examples=[ ["""What word doesn't make sense in this row: "car, airplane, lama, bus"?"""], ["Write a news article about the usage of Lama's by the CSI"], ["What are great things cook when getting started with Asian cooking?"], ["Who was Anthony Bourdain?"], ], title="πŸ’ͺ🏽🦾 LLM human-feedback collector ChatInterface 🦾πŸ’ͺ🏽", description="""This is an adaptation of the gr.ChatInferface which allows for human feedback collection for SFT, DPO and KTO. Example usage: ```python chat_interface = ChatInterface( fn=generate, prefence_techniques="dpo", min_turns=1, max_turns=10, repo_id="example_dataset", chatbot=gr.Chatbot( height=450, label="GEITje-SPIN", show_share_button=True, avatar_images=(None, "geitje-logo.jpg") ) ) ``` """, ) with gr.Blocks(css="style.css") as demo: chat_interface.render() if __name__ == "__main__": demo.queue(max_size=20).launch()