daviddwlee84's picture
Fix the launch queue
ae15419
import os
import random
import numpy as np
import tensorflow as tf
from PIL import Image
import gradio as gr
from huggingface_hub import from_pretrained_keras
model = from_pretrained_keras("keras-io/GauGAN-Image-generation")
def predict(image_file, segmentation_png, bitmap_img):
image_list = [segmentation_png, image_file, bitmap_img]
image = tf.image.decode_png(tf.io.read_file(image_list[1]), channels=3)
image = tf.cast(image, tf.float32) / 127.5 - 1
segmentation_file = tf.image.decode_png(tf.io.read_file(image_list[0]), channels=3)
segmentation_file = tf.cast(segmentation_file, tf.float32) / 127.5 - 1
label_file = tf.image.decode_bmp(tf.io.read_file(image_list[2]), channels=0)
# label_file = tf.image.rgb_to_grayscale(tf.image.decode_bmp(tf.io.read_file(image_list[2]), channels=3))
# print("after decode_bmp --> ", label_file.shape, type(label_file))
label_file = tf.squeeze(label_file)
image_list = [segmentation_file, image, label_file]
crop_size = tf.convert_to_tensor((256, 256))
image_shape = tf.shape(image_list[1])[:2]
margins = image_shape - crop_size
y1 = tf.random.uniform(shape=(), maxval=margins[0], dtype=tf.int32)
x1 = tf.random.uniform(shape=(), maxval=margins[1], dtype=tf.int32)
y2 = y1 + crop_size[0]
x2 = x1 + crop_size[1]
cropped_images = []
for img in image_list:
cropped_images.append(img[y1:y2, x1:x2])
final_img_list = [
tf.expand_dims(cropped_images[0], axis=0),
tf.expand_dims(cropped_images[1], axis=0),
tf.expand_dims(tf.one_hot(cropped_images[2], 12), axis=0),
]
# print(final_img_list[0].shape)
# print(final_img_list[1].shape)
# print(final_img_list[2].shape)
latent_vector = tf.random.normal(shape=(1, 256), mean=0.0, stddev=2.0)
# Generate fake images
fake_image = model.predict([latent_vector, final_img_list[2]])
fake_img = tf.squeeze(fake_image, axis=0)
return np.array((fake_img + 1) / 2)
# Define inputs with modern Gradio syntax
ground_truth = gr.Image(type="filepath", label="Ground Truth - Real Image (jpg)")
segmentation = gr.Image(type="filepath", label="Corresponding Segmentation (png)")
bitmap = gr.Image(
type="filepath", label="Corresponding bitmap image (bmp)", image_mode="L"
)
examples = [
[
"facades_data/cmp_b0010.jpg",
"facades_data/cmp_b0010.png",
"facades_data/cmp_b0010.bmp",
],
[
"facades_data/cmp_b0020.jpg",
"facades_data/cmp_b0020.png",
"facades_data/cmp_b0020.bmp",
],
[
"facades_data/cmp_b0030.jpg",
"facades_data/cmp_b0030.png",
"facades_data/cmp_b0030.bmp",
],
[
"facades_data/cmp_b0040.jpg",
"facades_data/cmp_b0040.png",
"facades_data/cmp_b0040.bmp",
],
[
"facades_data/cmp_b0050.jpg",
"facades_data/cmp_b0050.png",
"facades_data/cmp_b0050.bmp",
],
]
title = "GauGAN For Conditional Image Generation"
description = "Upload an Image or take one from examples to generate realistic images that are conditioned on cue images and segmentation maps"
# Create interface with modern Gradio syntax
demo = gr.Interface(
fn=predict,
inputs=[ground_truth, segmentation, bitmap],
outputs=gr.Image(type="numpy", label="Generated - Conditioned Images"),
examples=examples,
flagging_mode="never",
analytics_enabled=False,
title=title,
description=description,
article="<center>Space By: <u><a href='https://github.com/robotjellyzone'><b>Kavya Bisht</b></a></u> \n Based on <a href='https://keras.io/examples/generative/gaugan/'><b>this notebook</b></a></center>",
)
if __name__ == "__main__":
demo.queue()
demo.launch(debug=True)