Spaces:
Sleeping
Sleeping
from io import BytesIO | |
import pandas as pd | |
import streamlit as st | |
import tokenizers | |
import torch | |
from transformers import Pipeline, pipeline | |
st.set_page_config( | |
page_title="Zero-shot classification from tabular data", | |
page_icon=None, | |
layout="wide", | |
initial_sidebar_state="auto", | |
menu_items=None, | |
) | |
def load_classifier() -> Pipeline: | |
classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli") | |
return classifier | |
with st.spinner(text="Setting stuff up related to the inference engine..."): | |
classifier = load_classifier() | |
st.title("Zero-shot classification from tabular data") | |
st.text( | |
"Upload an Excel table and perform zero-shot classification on a set of custom labels" | |
) | |
data = st.file_uploader( | |
"Upload Excel file (it should contain a column named `text` in its header):" | |
) | |
labels = st.text_input("Enter comma-separated labels:") | |
# classify first N snippets only for faster inference | |
N = 10000 | |
if st.button("Calculate labels"): | |
try: | |
labels_list = labels.split(",") | |
table = pd.read_excel(data) | |
table = table.head(N).reset_index(drop=True) | |
prog_bar = st.progress(0) | |
preds = [] | |
for i in range(len(table)): | |
preds.append(classifier(table.loc[i, "text"], labels)["labels"][0]) | |
prog_bar.progress((i + 1) / len(table)) | |
table["label"] = preds | |
st.table(table[["text", "label"]]) | |
buf = BytesIO() | |
table[["text", "label"]].to_excel(buf) | |
st.download_button( | |
label="Download table", data=buf.getvalue(), file_name="output.xlsx" | |
) | |
except: | |
st.error( | |
"Something went wrong. Make sure you upload an Excel file containing a column named `text` and a set of comma-separated labels is provided" | |
) | |