File size: 6,850 Bytes
577164e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 |
from transformers import AutoModelForCausalLM, AutoTokenizer, StoppingCriteria, StoppingCriteriaList
import torch
from utils.simple_bleu import simple_score
import torch
templates = {
'gemma': {
'stop_words': ['<eos>', ''],
'ko2en': '<bos><start_of_turn>user\n๋ค์ ๋ฌธ์ฅ์ ์์ด๋ก ๋ฒ์ญํ์ธ์.{0}<end_of_turn>\n<start_of_turn>model:',
'en2ko': '<bos><start_of_turn>user\n๋ค์ ๋ฌธ์ฅ์ ํ๊ธ๋ก ๋ฒ์ญํ์ธ์.{0}<end_of_turn>\n<start_of_turn>model:',
'trim_keywords': ['<eos>', ''],
},
'openchat': {
'stop_words': ['<eos>', '<|end_of_turn|>'],
'ko2en': '<s> GPT4 Correct User: ๋ค์ ๋ฌธ์ฅ์ ์์ด๋ก ๋ฒ์ญํ์ธ์. {0}<|end_of_turn|> GPT4 Correct Assistant:',
'en2ko': '<s> GPT4 Correct User: ๋ค์ ๋ฌธ์ฅ์ ํ๊ธ๋ก ๋ฒ์ญํ์ธ์. {0}<|end_of_turn|> GPT4 Correct Assistant:',
'trim_keywords': ['<eos>', '<|end_of_turn|>'],
},
'qwen': {
'stop_words': ['<eos>', '<|im_end|>'],
'ko2en': '<|im_start|>system \n You are a helpful assistant<|im_end|>\n <|im_start|>๋ค์ ๋ฌธ์ฅ์ ์์ด๋ก ๋ฒ์ญํ์ธ์. \n {0}<|im_end|>\n<|im_start|>assistant\n',
'ko2en': '<|im_start|>system \n You are a helpful assistant<|im_end|>\n <|im_start|>๋ค์ ๋ฌธ์ฅ์ ํ๊ธ๋ก ๋ฒ์ญํ์ธ์. \n {0}<|im_end|>\n<|im_start|>assistant\n',
'trim_keywords': ['<eos>', '<|im_end|>'],
},
#
# <|im_start|>assistant
# "Do you exist?"<|im_end|>
# ]
'davidkim205/iris-7b': {
'stop_words': ['</s>'],
'ko2en': '[INST] ๋ค์ ๋ฌธ์ฅ์ ์์ด๋ก ๋ฒ์ญํ์ธ์.{0} [/INST]',
'en2ko': '[INST] ๋ค์ ๋ฌธ์ฅ์ ํ๊ธ๋ก ๋ฒ์ญํ์ธ์.{0} [/INST]',
'trim_keywords': ['</s>'],
},
'squarelike/Gugugo-koen-7B-V1.1': {
'stop_words': ['</s>', '</๋>'],
'ko2en': '### ํ๊ตญ์ด: {0}</๋>\n### ์์ด:',
'en2ko': "### ์์ด: {0}</๋>\n### ํ๊ตญ์ด:",
'trim_keywords': ['</s>', '</๋>'],
},
'maywell/Synatra-7B-v0.3-Translation': {
'stop_words': ['</s>', '</๋>', '<|im_end|>'],
'ko2en': '<|im_start|>system\n์ฃผ์ด์ง ๋ฌธ์ฅ์ ์์ด๋ก ๋ฒ์ญํด๋ผ.<|im_end|>\n<|im_start|>user\n{0}<|im_end|>\n<|im_start|>assistant',
'en2ko': '<|im_start|>system\n์ฃผ์ด์ง ๋ฌธ์ฅ์ ํ๊ตญ์ด๋ก ๋ฒ์ญํด๋ผ.<|im_end|>\n<|im_start|>user\n{0}<|im_end|>\n<|im_start|>assistant',
'trim_keywords': ['<|im_end|>'],
},
'Unbabel/TowerInstruct-7B-v0.1': {
'stop_words': ['</s>', '</๋>', '<|im_end|>'],
'ko2en': '<|im_start|>user\nTranslate the following text from English into Korean.\nKorean: {0}\nEnglish:<|im_end|>\n<|im_start|>assistant',
'en2ko': '<|im_start|>user\nTranslate the following text from Korean into English.\nEnglish: {0}\nKorean:<|im_end|>\n<|im_start|>assistant',
'trim_keywords': ['<|im_end|>'],
},
}
model_info = {'model': None, 'tokenizer': None, 'stopping_criteria': None}
class LocalStoppingCriteria(StoppingCriteria):
def __init__(self, tokenizer, stop_words=[]):
super().__init__()
stops = [tokenizer(stop_word, return_tensors='pt', add_special_tokens=False)['input_ids'].squeeze() for
stop_word in stop_words]
print('stop_words', stop_words)
print('stop_words_ids', stops)
self.stop_words = stop_words
self.stops = [stop.cuda() for stop in stops]
self.tokenizer = tokenizer
def _compare_token(self, input_ids):
for stop in self.stops:
if len(stop.size()) != 1:
continue
stop_len = len(stop)
if torch.all((stop == input_ids[0][-stop_len:])).item():
return True
return False
def _compare_decode(self, input_ids):
input_str = self.tokenizer.decode(input_ids[0])
for stop_word in self.stop_words:
if input_str.endswith(stop_word):
return True
return False
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor):
return self._compare_decode(input_ids)
def trim_sentence(sentence, keywords):
for keyword in keywords:
if keyword in sentence:
# ํค์๋๋ฅผ ์ฐพ์ ๊ฒฝ์ฐ, ํด๋น ์ธ๋ฑ์ค๋ฅผ ๊ธฐ์ค์ผ๋ก ๋ฌธ์ฅ์ ์๋ฆ
index = sentence.find(keyword)
trimmed_sentence = sentence[:index]
sentence = trimmed_sentence.strip() # ์ข์ฐ ๊ณต๋ฐฑ ์ ๊ฑฐ ํ ๋ฐํ
return sentence
def load_model(path, template_name=None):
global model_info
print('load_model', path)
if template_name == None:
template_name = path
if templates.get(template_name) == None:
template_name = 'davidkim205/iris-7b'
model = AutoModelForCausalLM.from_pretrained(path, torch_dtype=torch.bfloat16, device_map='auto')
tokenizer = AutoTokenizer.from_pretrained(path)
model_info['model'] = model
model_info['tokenizer'] = tokenizer
model_info['template'] = templates[template_name]
stop_words = templates[template_name]['stop_words']
stopping_criteria = StoppingCriteriaList([LocalStoppingCriteria(tokenizer=tokenizer, stop_words=stop_words)])
model_info['stopping_criteria'] = stopping_criteria
def generate(prompt):
global model_info
if model_info['model'] == None:
print('model is null, load the model first.')
return ''
model = model_info['model']
tokenizer = model_info['tokenizer']
stopping_criteria = model_info['stopping_criteria']
encoding = tokenizer(
prompt,
return_tensors='pt',
return_token_type_ids=False
).to("cuda")
gen_tokens = model.generate(
**encoding,
max_new_tokens=2048,
temperature=1.0,
num_beams=5,
stopping_criteria=stopping_criteria
)
prompt_end_size = encoding.input_ids.shape[1]
result = tokenizer.decode(gen_tokens[0, prompt_end_size:])
result = trim_sentence(result, model_info['template']['trim_keywords'])
return result
def translate_ko2en(text):
global model_info
prompt = model_info['template']['ko2en'].format(text)
return generate(prompt)
def translate_en2ko(text):
global model_info
prompt = model_info['template']['en2ko'].format(text)
return generate(prompt)
def main():
load_model("davidkim205/iris-7b")
# load_model("squarelike/Gugugo-koen-7B-V1.1")
# load_model("maywell/Synatra-7B-v0.3-Translation")
# load_model("Unbabel/TowerInstruct-7B-v0.1")
while True:
text = input('>')
en_text = translate_ko2en(text)
ko_text = translate_en2ko(en_text)
print('------------------')
print('en_text', en_text)
print('ko_text', ko_text)
print('score', simple_score(text, ko_text))
if __name__ == "__main__":
main()
|