Spaces:
Sleeping
Sleeping
File size: 2,787 Bytes
71ecb21 d48b64d 71ecb21 fc194f7 71ecb21 26be06c 71ecb21 26be06c 71ecb21 26be06c 71ecb21 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 |
import matplotlib.pyplot as plt
import pandas as pd
import streamlit as st
def load_data(year):
"""Load data from a CSV file for the given year."""
try:
data = pd.read_csv(f"validation/{year}.csv")
return data
except FileNotFoundError:
st.error(f"No data found for year {year}. Please ensure the file exists.")
return None
def filter_data(data, country, brand):
"""Filter the data for the selected country and brand."""
return data[(data['country'] == country) & (data['brand'] == brand)]
def plot_data(filtered_data):
"""Plot target vs. date with a confidence interval."""
if filtered_data.empty:
st.warning("No data available for the selected criteria.")
return
st.write("Plotting target vs date with confidence intervals.")
dates = pd.to_datetime(filtered_data['date'])
target = filtered_data['target']
prediction = filtered_data['prediction']
prediction_10 = filtered_data['prediction_10']
prediction_90 = filtered_data['prediction_90']
plt.figure(figsize=(7, 7))
# Plot the target
plt.plot(dates, target, label='Target', color='blue')
# Plot the prediction with confidence interval
plt.plot(dates, prediction, label='Prediction', color='orange')
plt.fill_between(dates, prediction_10, prediction_90, color='orange', alpha=0.2, label='Confidence Interval (10th to 90th percentile)')
plt.xlabel('Date')
plt.ylabel('Target')
plt.title('Target vs Date with Confidence Interval')
plt.legend()
plt.grid(True)
st.pyplot(plt)
def main():
st.title("Data Visualization App")
# Step 1: Select Year, default to 2021
year = st.sidebar.selectbox("Select Year", range(2017, 2022), index=4)
# Load data based on year selection
data = load_data(year)
if data is not None:
# Step 2: Select Country based on available options for the year
available_countries = data['country'].unique()
# default to COUNTRY_6B71
available_countries = ["COUNTRY_6B71"] + list(x for x in available_countries if x != "COUNTRY_6B71")
country = st.sidebar.selectbox("Select Country", available_countries)
# Step 3: Select Brand based on available options for the year and country
available_brands = data[data['country'] == country]['brand'].unique()
# default to BRAND_24CB
available_brands = ["BRAND_24CB"] + list(x for x in available_brands if x != "BRAND_24CB")
brand = st.sidebar.selectbox("Select Brand", available_brands)
# Filter data based on inputs
filtered_data = filter_data(data, country, brand)
# Plot the data
plot_data(filtered_data)
if __name__ == "__main__":
main() |