davidmasip commited on
Commit
63fca82
·
1 Parent(s): 8c508e1
Files changed (1) hide show
  1. app.py +9 -15
app.py CHANGED
@@ -1,23 +1,17 @@
1
- import requests
2
  import tensorflow as tf
3
 
4
- inception_net = tf.keras.applications.MobileNetV2()
5
-
6
- # Download human-readable labels for ImageNet.
7
- response = requests.get("https://git.io/JJkYN")
8
- labels = response.text.split("\n")
9
 
10
  def classify_image(inp):
11
- inp = inp.reshape((-1, 224, 224, 3))
12
- inp = tf.keras.applications.mobilenet_v2.preprocess_input(inp)
13
- prediction = inception_net.predict(inp).flatten()
14
- confidences = {labels[i]: float(prediction[i]) for i in range(1000)}
15
- return confidences
16
 
17
 
18
- import gradio as gr
19
-
20
  gr.Interface(fn=classify_image,
21
  inputs=gr.inputs.Image(shape=(224, 224)),
22
- outputs=gr.outputs.Label(num_top_classes=3),
23
- examples=["banana.jpg", "car.jpg"]).launch()
 
 
1
+ import gradio as gr
2
  import tensorflow as tf
3
 
4
+ new_model = tf.keras.models.load_model('my_model.h5')
5
+ # preprocess_input = tf.keras.applications.resnet50.preprocess_input
 
 
 
6
 
7
  def classify_image(inp):
8
+ inp = inp.reshape((-1, 224, 224, 3))
9
+ prediction = new_model.predict(inp).flatten()
10
+ return prediction
 
 
11
 
12
 
 
 
13
  gr.Interface(fn=classify_image,
14
  inputs=gr.inputs.Image(shape=(224, 224)),
15
+ outputs="label",
16
+ examples=[]).launch()
17
+