File size: 39,723 Bytes
8d783eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
# Copyright 2022 Lunar Ring. All rights reserved.
# Written by Johannes Stelzer, email [email protected] twitter @j_stelzer
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import torch
torch.backends.cudnn.benchmark = False
torch.set_grad_enabled(False)
import numpy as np
import warnings
warnings.filterwarnings('ignore')
import time
import warnings
from tqdm.auto import tqdm
from PIL import Image
from movie_util import MovieSaver
from typing import List, Optional
from ldm.models.diffusion.ddpm import LatentUpscaleDiffusion, LatentInpaintDiffusion
import lpips
from utils import interpolate_spherical, interpolate_linear, add_frames_linear_interp, yml_load, yml_save


class LatentBlending():
    def __init__(
            self,
            sdh: None,
            guidance_scale: float = 4,
            guidance_scale_mid_damper: float = 0.5,
            mid_compression_scaler: float = 1.2):
        r"""
        Initializes the latent blending class.
        Args:
            guidance_scale: float
                Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
                `guidance_scale` is defined as `w` of equation 2. of [Imagen
                Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
                1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
                usually at the expense of lower image quality.
            guidance_scale_mid_damper: float = 0.5
                Reduces the guidance scale towards the middle of the transition.
                A value of 0.5 would decrease the guidance_scale towards the middle linearly by 0.5.
            mid_compression_scaler: float = 2.0
                Increases the sampling density in the middle (where most changes happen). Higher value
                imply more values in the middle. However the inflection point can occur outside the middle,
                thus high values can give rough transitions. Values around 2 should be fine.
        """
        assert guidance_scale_mid_damper > 0 \
            and guidance_scale_mid_damper <= 1.0, \
            f"guidance_scale_mid_damper neees to be in interval (0,1], you provided {guidance_scale_mid_damper}"

        self.sdh = sdh
        self.device = self.sdh.device
        self.width = self.sdh.width
        self.height = self.sdh.height
        self.guidance_scale_mid_damper = guidance_scale_mid_damper
        self.mid_compression_scaler = mid_compression_scaler
        self.seed1 = 0
        self.seed2 = 0

        # Initialize vars
        self.prompt1 = ""
        self.prompt2 = ""
        self.negative_prompt = ""

        self.tree_latents = [None, None]
        self.tree_fracts = None
        self.idx_injection = []
        self.tree_status = None
        self.tree_final_imgs = []

        self.list_nmb_branches_prev = []
        self.list_injection_idx_prev = []
        self.text_embedding1 = None
        self.text_embedding2 = None
        self.image1_lowres = None
        self.image2_lowres = None
        self.negative_prompt = None
        self.num_inference_steps = self.sdh.num_inference_steps
        self.noise_level_upscaling = 20
        self.list_injection_idx = None
        self.list_nmb_branches = None

        # Mixing parameters
        self.branch1_crossfeed_power = 0.1
        self.branch1_crossfeed_range = 0.6
        self.branch1_crossfeed_decay = 0.8

        self.parental_crossfeed_power = 0.1
        self.parental_crossfeed_range = 0.8
        self.parental_crossfeed_power_decay = 0.8

        self.set_guidance_scale(guidance_scale)
        self.init_mode()
        self.multi_transition_img_first = None
        self.multi_transition_img_last = None
        self.dt_per_diff = 0
        self.spatial_mask = None
        self.lpips = lpips.LPIPS(net='alex').cuda(self.device)

    def init_mode(self):
        r"""
        Sets the operational mode. Currently supported are standard, inpainting and x4 upscaling.
        """
        if isinstance(self.sdh.model, LatentUpscaleDiffusion):
            self.mode = 'upscale'
        elif isinstance(self.sdh.model, LatentInpaintDiffusion):
            self.sdh.image_source = None
            self.sdh.mask_image = None
            self.mode = 'inpaint'
        else:
            self.mode = 'standard'

    def set_guidance_scale(self, guidance_scale):
        r"""
        sets the guidance scale.
        """
        self.guidance_scale_base = guidance_scale
        self.guidance_scale = guidance_scale
        self.sdh.guidance_scale = guidance_scale

    def set_negative_prompt(self, negative_prompt):
        r"""Set the negative prompt. Currenty only one negative prompt is supported
        """
        self.negative_prompt = negative_prompt
        self.sdh.set_negative_prompt(negative_prompt)

    def set_guidance_mid_dampening(self, fract_mixing):
        r"""
        Tunes the guidance scale down as a linear function of fract_mixing,
        towards 0.5 the minimum will be reached.
        """
        mid_factor = 1 - np.abs(fract_mixing - 0.5) / 0.5
        max_guidance_reduction = self.guidance_scale_base * (1 - self.guidance_scale_mid_damper) - 1
        guidance_scale_effective = self.guidance_scale_base - max_guidance_reduction * mid_factor
        self.guidance_scale = guidance_scale_effective
        self.sdh.guidance_scale = guidance_scale_effective

    def set_branch1_crossfeed(self, crossfeed_power, crossfeed_range, crossfeed_decay):
        r"""
        Sets the crossfeed parameters for the first branch to the last branch.
        Args:
            crossfeed_power: float [0,1]
                Controls the level of cross-feeding between the first and last image branch.
            crossfeed_range: float [0,1]
                Sets the duration of active crossfeed during development.
            crossfeed_decay: float [0,1]
                Sets decay for branch1_crossfeed_power. Lower values make the decay stronger across the range.
        """
        self.branch1_crossfeed_power = np.clip(crossfeed_power, 0, 1)
        self.branch1_crossfeed_range = np.clip(crossfeed_range, 0, 1)
        self.branch1_crossfeed_decay = np.clip(crossfeed_decay, 0, 1)

    def set_parental_crossfeed(self, crossfeed_power, crossfeed_range, crossfeed_decay):
        r"""
        Sets the crossfeed parameters for all transition images (within the first and last branch).
        Args:
            crossfeed_power: float [0,1]
                Controls the level of cross-feeding from the parental branches
            crossfeed_range: float [0,1]
                Sets the duration of active crossfeed during development.
            crossfeed_decay: float [0,1]
                Sets decay for branch1_crossfeed_power. Lower values make the decay stronger across the range.
        """
        self.parental_crossfeed_power = np.clip(crossfeed_power, 0, 1)
        self.parental_crossfeed_range = np.clip(crossfeed_range, 0, 1)
        self.parental_crossfeed_power_decay = np.clip(crossfeed_decay, 0, 1)

    def set_prompt1(self, prompt: str):
        r"""
        Sets the first prompt (for the first keyframe) including text embeddings.
        Args:
            prompt: str
                ABC trending on artstation painted by Greg Rutkowski
        """
        prompt = prompt.replace("_", " ")
        self.prompt1 = prompt
        self.text_embedding1 = self.get_text_embeddings(self.prompt1)

    def set_prompt2(self, prompt: str):
        r"""
        Sets the second prompt (for the second keyframe) including text embeddings.
        Args:
            prompt: str
                XYZ trending on artstation painted by Greg Rutkowski
        """
        prompt = prompt.replace("_", " ")
        self.prompt2 = prompt
        self.text_embedding2 = self.get_text_embeddings(self.prompt2)

    def set_image1(self, image: Image):
        r"""
        Sets the first image (keyframe), relevant for the upscaling model transitions.
        Args:
            image: Image
        """
        self.image1_lowres = image

    def set_image2(self, image: Image):
        r"""
        Sets the second image (keyframe), relevant for the upscaling model transitions.
        Args:
            image: Image
        """
        self.image2_lowres = image

    def run_transition(
            self,
            recycle_img1: Optional[bool] = False,
            recycle_img2: Optional[bool] = False,
            num_inference_steps: Optional[int] = 30,
            depth_strength: Optional[float] = 0.3,
            t_compute_max_allowed: Optional[float] = None,
            nmb_max_branches: Optional[int] = None,
            fixed_seeds: Optional[List[int]] = None):
        r"""
        Function for computing transitions.
        Returns a list of transition images using spherical latent blending.
        Args:
            recycle_img1: Optional[bool]:
                Don't recompute the latents for the first keyframe (purely prompt1). Saves compute.
            recycle_img2: Optional[bool]:
                Don't recompute the latents for the second keyframe (purely prompt2). Saves compute.
            num_inference_steps:
                Number of diffusion steps. Higher values will take more compute time.
            depth_strength:
                Determines how deep the first injection will happen.
                Deeper injections will cause (unwanted) formation of new structures,
                more shallow values will go into alpha-blendy land.
            t_compute_max_allowed:
                Either provide t_compute_max_allowed or nmb_max_branches.
                The maximum time allowed for computation. Higher values give better results but take longer.
            nmb_max_branches: int
                Either provide t_compute_max_allowed or nmb_max_branches. The maximum number of branches to be computed. Higher values give better
                results. Use this if you want to have controllable results independent
                of your computer.
            fixed_seeds: Optional[List[int)]:
                You can supply two seeds that are used for the first and second keyframe (prompt1 and prompt2).
                Otherwise random seeds will be taken.
        """

        # Sanity checks first
        assert self.text_embedding1 is not None, 'Set the first text embedding with .set_prompt1(...) before'
        assert self.text_embedding2 is not None, 'Set the second text embedding with .set_prompt2(...) before'

        # Random seeds
        if fixed_seeds is not None:
            if fixed_seeds == 'randomize':
                fixed_seeds = list(np.random.randint(0, 1000000, 2).astype(np.int32))
            else:
                assert len(fixed_seeds) == 2, "Supply a list with len = 2"

            self.seed1 = fixed_seeds[0]
            self.seed2 = fixed_seeds[1]

        # Ensure correct num_inference_steps in holder
        self.num_inference_steps = num_inference_steps
        self.sdh.num_inference_steps = num_inference_steps

        # Compute / Recycle first image
        if not recycle_img1 or len(self.tree_latents[0]) != self.num_inference_steps:
            list_latents1 = self.compute_latents1()
        else:
            list_latents1 = self.tree_latents[0]

        # Compute / Recycle first image
        if not recycle_img2 or len(self.tree_latents[-1]) != self.num_inference_steps:
            list_latents2 = self.compute_latents2()
        else:
            list_latents2 = self.tree_latents[-1]

        # Reset the tree, injecting the edge latents1/2 we just generated/recycled
        self.tree_latents = [list_latents1, list_latents2]
        self.tree_fracts = [0.0, 1.0]
        self.tree_final_imgs = [self.sdh.latent2image((self.tree_latents[0][-1])), self.sdh.latent2image((self.tree_latents[-1][-1]))]
        self.tree_idx_injection = [0, 0]

        # Hard-fix. Apply spatial mask only for list_latents2 but not for transition. WIP...
        self.spatial_mask = None

        # Set up branching scheme (dependent on provided compute time)
        list_idx_injection, list_nmb_stems = self.get_time_based_branching(depth_strength, t_compute_max_allowed, nmb_max_branches)

        # Run iteratively, starting with the longest trajectory.
        # Always inserting new branches where they are needed most according to image similarity
        for s_idx in tqdm(range(len(list_idx_injection))):
            nmb_stems = list_nmb_stems[s_idx]
            idx_injection = list_idx_injection[s_idx]

            for i in range(nmb_stems):
                fract_mixing, b_parent1, b_parent2 = self.get_mixing_parameters(idx_injection)
                self.set_guidance_mid_dampening(fract_mixing)
                list_latents = self.compute_latents_mix(fract_mixing, b_parent1, b_parent2, idx_injection)
                self.insert_into_tree(fract_mixing, idx_injection, list_latents)
                # print(f"fract_mixing: {fract_mixing} idx_injection {idx_injection}")

        return self.tree_final_imgs

    def compute_latents1(self, return_image=False):
        r"""
        Runs a diffusion trajectory for the first image
        Args:
            return_image: bool
                whether to return an image or the list of latents
        """
        print("starting compute_latents1")
        list_conditionings = self.get_mixed_conditioning(0)
        t0 = time.time()
        latents_start = self.get_noise(self.seed1)
        list_latents1 = self.run_diffusion(
            list_conditionings,
            latents_start=latents_start,
            idx_start=0)
        t1 = time.time()
        self.dt_per_diff = (t1 - t0) / self.num_inference_steps
        self.tree_latents[0] = list_latents1
        if return_image:
            return self.sdh.latent2image(list_latents1[-1])
        else:
            return list_latents1

    def compute_latents2(self, return_image=False):
        r"""
        Runs a diffusion trajectory for the last image, which may be affected by the first image's trajectory.
        Args:
            return_image: bool
                whether to return an image or the list of latents
        """
        print("starting compute_latents2")
        list_conditionings = self.get_mixed_conditioning(1)
        latents_start = self.get_noise(self.seed2)
        # Influence from branch1
        if self.branch1_crossfeed_power > 0.0:
            # Set up the mixing_coeffs
            idx_mixing_stop = int(round(self.num_inference_steps * self.branch1_crossfeed_range))
            mixing_coeffs = list(np.linspace(self.branch1_crossfeed_power, self.branch1_crossfeed_power * self.branch1_crossfeed_decay, idx_mixing_stop))
            mixing_coeffs.extend((self.num_inference_steps - idx_mixing_stop) * [0])
            list_latents_mixing = self.tree_latents[0]
            list_latents2 = self.run_diffusion(
                list_conditionings,
                latents_start=latents_start,
                idx_start=0,
                list_latents_mixing=list_latents_mixing,
                mixing_coeffs=mixing_coeffs)
        else:
            list_latents2 = self.run_diffusion(list_conditionings, latents_start)
        self.tree_latents[-1] = list_latents2

        if return_image:
            return self.sdh.latent2image(list_latents2[-1])
        else:
            return list_latents2

    def compute_latents_mix(self, fract_mixing, b_parent1, b_parent2, idx_injection):
        r"""
        Runs a diffusion trajectory, using the latents from the respective parents
        Args:
            fract_mixing: float
                the fraction along the transition axis [0, 1]
            b_parent1: int
                index of parent1 to be used
            b_parent2: int
                index of parent2 to be used
            idx_injection: int
                the index in terms of diffusion steps, where the next insertion will start.
        """
        list_conditionings = self.get_mixed_conditioning(fract_mixing)
        fract_mixing_parental = (fract_mixing - self.tree_fracts[b_parent1]) / (self.tree_fracts[b_parent2] - self.tree_fracts[b_parent1])
        # idx_reversed = self.num_inference_steps - idx_injection

        list_latents_parental_mix = []
        for i in range(self.num_inference_steps):
            latents_p1 = self.tree_latents[b_parent1][i]
            latents_p2 = self.tree_latents[b_parent2][i]
            if latents_p1 is None or latents_p2 is None:
                latents_parental = None
            else:
                latents_parental = interpolate_spherical(latents_p1, latents_p2, fract_mixing_parental)
            list_latents_parental_mix.append(latents_parental)

        idx_mixing_stop = int(round(self.num_inference_steps * self.parental_crossfeed_range))
        mixing_coeffs = idx_injection * [self.parental_crossfeed_power]
        nmb_mixing = idx_mixing_stop - idx_injection
        if nmb_mixing > 0:
            mixing_coeffs.extend(list(np.linspace(self.parental_crossfeed_power, self.parental_crossfeed_power * self.parental_crossfeed_power_decay, nmb_mixing)))
        mixing_coeffs.extend((self.num_inference_steps - len(mixing_coeffs)) * [0])
        latents_start = list_latents_parental_mix[idx_injection - 1]
        list_latents = self.run_diffusion(
            list_conditionings,
            latents_start=latents_start,
            idx_start=idx_injection,
            list_latents_mixing=list_latents_parental_mix,
            mixing_coeffs=mixing_coeffs)
        return list_latents

    def get_time_based_branching(self, depth_strength, t_compute_max_allowed=None, nmb_max_branches=None):
        r"""
        Sets up the branching scheme dependent on the time that is granted for compute.
        The scheme uses an estimation derived from the first image's computation speed.
        Either provide t_compute_max_allowed or nmb_max_branches
        Args:
            depth_strength:
                Determines how deep the first injection will happen.
                Deeper injections will cause (unwanted) formation of new structures,
                more shallow values will go into alpha-blendy land.
            t_compute_max_allowed: float
                The maximum time allowed for computation. Higher values give better results
                but take longer. Use this if you want to fix your waiting time for the results.
            nmb_max_branches: int
                The maximum number of branches to be computed. Higher values give better
                results. Use this if you want to have controllable results independent
                of your computer.
        """
        idx_injection_base = int(round(self.num_inference_steps * depth_strength))
        list_idx_injection = np.arange(idx_injection_base, self.num_inference_steps - 1, 3)
        list_nmb_stems = np.ones(len(list_idx_injection), dtype=np.int32)
        t_compute = 0

        if nmb_max_branches is None:
            assert t_compute_max_allowed is not None, "Either specify t_compute_max_allowed or nmb_max_branches"
            stop_criterion = "t_compute_max_allowed"
        elif t_compute_max_allowed is None:
            assert nmb_max_branches is not None, "Either specify t_compute_max_allowed or nmb_max_branches"
            stop_criterion = "nmb_max_branches"
            nmb_max_branches -= 2  # Discounting the outer frames
        else:
            raise ValueError("Either specify t_compute_max_allowed or nmb_max_branches")
        stop_criterion_reached = False
        is_first_iteration = True
        while not stop_criterion_reached:
            list_compute_steps = self.num_inference_steps - list_idx_injection
            list_compute_steps *= list_nmb_stems
            t_compute = np.sum(list_compute_steps) * self.dt_per_diff + 0.15 * np.sum(list_nmb_stems)
            increase_done = False
            for s_idx in range(len(list_nmb_stems) - 1):
                if list_nmb_stems[s_idx + 1] / list_nmb_stems[s_idx] >= 2:
                    list_nmb_stems[s_idx] += 1
                    increase_done = True
                    break
            if not increase_done:
                list_nmb_stems[-1] += 1

            if stop_criterion == "t_compute_max_allowed" and t_compute > t_compute_max_allowed:
                stop_criterion_reached = True
            elif stop_criterion == "nmb_max_branches" and np.sum(list_nmb_stems) >= nmb_max_branches:
                stop_criterion_reached = True
                if is_first_iteration:
                    # Need to undersample.
                    list_idx_injection = np.linspace(list_idx_injection[0], list_idx_injection[-1], nmb_max_branches).astype(np.int32)
                    list_nmb_stems = np.ones(len(list_idx_injection), dtype=np.int32)
            else:
                is_first_iteration = False

            # print(f"t_compute {t_compute} list_nmb_stems {list_nmb_stems}")
        return list_idx_injection, list_nmb_stems

    def get_mixing_parameters(self, idx_injection):
        r"""
        Computes which parental latents should be mixed together to achieve a smooth blend.
        As metric, we are using lpips image similarity. The insertion takes place
        where the metric is maximal.
        Args:
            idx_injection: int
                the index in terms of diffusion steps, where the next insertion will start.
        """
        # get_lpips_similarity
        similarities = []
        for i in range(len(self.tree_final_imgs) - 1):
            similarities.append(self.get_lpips_similarity(self.tree_final_imgs[i], self.tree_final_imgs[i + 1]))
        b_closest1 = np.argmax(similarities)
        b_closest2 = b_closest1 + 1
        fract_closest1 = self.tree_fracts[b_closest1]
        fract_closest2 = self.tree_fracts[b_closest2]

        # Ensure that the parents are indeed older!
        b_parent1 = b_closest1
        while True:
            if self.tree_idx_injection[b_parent1] < idx_injection:
                break
            else:
                b_parent1 -= 1
        b_parent2 = b_closest2
        while True:
            if self.tree_idx_injection[b_parent2] < idx_injection:
                break
            else:
                b_parent2 += 1
        fract_mixing = (fract_closest1 + fract_closest2) / 2
        return fract_mixing, b_parent1, b_parent2

    def insert_into_tree(self, fract_mixing, idx_injection, list_latents):
        r"""
        Inserts all necessary parameters into the trajectory tree.
        Args:
            fract_mixing: float
                the fraction along the transition axis [0, 1]
            idx_injection: int
                the index in terms of diffusion steps, where the next insertion will start.
            list_latents: list
                list of the latents to be inserted
        """
        b_parent1, b_parent2 = self.get_closest_idx(fract_mixing)
        self.tree_latents.insert(b_parent1 + 1, list_latents)
        self.tree_final_imgs.insert(b_parent1 + 1, self.sdh.latent2image(list_latents[-1]))
        self.tree_fracts.insert(b_parent1 + 1, fract_mixing)
        self.tree_idx_injection.insert(b_parent1 + 1, idx_injection)

    def get_spatial_mask_template(self):
        r"""
        Experimental helper function to get a spatial mask template.
        """
        shape_latents = [self.sdh.C, self.sdh.height // self.sdh.f, self.sdh.width // self.sdh.f]
        C, H, W = shape_latents
        return np.ones((H, W))

    def set_spatial_mask(self, img_mask):
        r"""
        Experimental helper function to set a spatial mask.
        The mask forces latents to be overwritten.
        Args:
            img_mask:
                mask image [0,1]. You can get a template using get_spatial_mask_template
        """
        shape_latents = [self.sdh.C, self.sdh.height // self.sdh.f, self.sdh.width // self.sdh.f]
        C, H, W = shape_latents
        img_mask = np.asarray(img_mask)
        assert len(img_mask.shape) == 2, "Currently, only 2D images are supported as mask"
        img_mask = np.clip(img_mask, 0, 1)
        assert img_mask.shape[0] == H, f"Your mask needs to be of dimension {H} x {W}"
        assert img_mask.shape[1] == W, f"Your mask needs to be of dimension {H} x {W}"
        spatial_mask = torch.from_numpy(img_mask).to(device=self.device)
        spatial_mask = torch.unsqueeze(spatial_mask, 0)
        spatial_mask = spatial_mask.repeat((C, 1, 1))
        spatial_mask = torch.unsqueeze(spatial_mask, 0)
        self.spatial_mask = spatial_mask

    def get_noise(self, seed):
        r"""
        Helper function to get noise given seed.
        Args:
            seed: int
        """
        generator = torch.Generator(device=self.sdh.device).manual_seed(int(seed))
        if self.mode == 'standard':
            shape_latents = [self.sdh.C, self.sdh.height // self.sdh.f, self.sdh.width // self.sdh.f]
            C, H, W = shape_latents
        elif self.mode == 'upscale':
            w = self.image1_lowres.size[0]
            h = self.image1_lowres.size[1]
            shape_latents = [self.sdh.model.channels, h, w]
            C, H, W = shape_latents
        return torch.randn((1, C, H, W), generator=generator, device=self.sdh.device)

    @torch.no_grad()
    def run_diffusion(
            self,
            list_conditionings,
            latents_start: torch.FloatTensor = None,
            idx_start: int = 0,
            list_latents_mixing=None,
            mixing_coeffs=0.0,
            return_image: Optional[bool] = False):
        r"""
        Wrapper function for diffusion runners.
        Depending on the mode, the correct one will be executed.

        Args:
            list_conditionings: list
                List of all conditionings for the diffusion model.
            latents_start: torch.FloatTensor
                Latents that are used for injection
            idx_start: int
                Index of the diffusion process start and where the latents_for_injection are injected
            list_latents_mixing: torch.FloatTensor
                List of latents (latent trajectories) that are used for mixing
            mixing_coeffs: float or list
                Coefficients, how strong each element of list_latents_mixing will be mixed in.
            return_image: Optional[bool]
                Optionally return image directly
        """

        # Ensure correct num_inference_steps in Holder
        self.sdh.num_inference_steps = self.num_inference_steps
        assert type(list_conditionings) is list, "list_conditionings need to be a list"

        if self.mode == 'standard':
            text_embeddings = list_conditionings[0]
            return self.sdh.run_diffusion_standard(
                text_embeddings=text_embeddings,
                latents_start=latents_start,
                idx_start=idx_start,
                list_latents_mixing=list_latents_mixing,
                mixing_coeffs=mixing_coeffs,
                spatial_mask=self.spatial_mask,
                return_image=return_image)

        elif self.mode == 'upscale':
            cond = list_conditionings[0]
            uc_full = list_conditionings[1]
            return self.sdh.run_diffusion_upscaling(
                cond,
                uc_full,
                latents_start=latents_start,
                idx_start=idx_start,
                list_latents_mixing=list_latents_mixing,
                mixing_coeffs=mixing_coeffs,
                return_image=return_image)

    def run_upscaling(
            self,
            dp_img: str,
            depth_strength: float = 0.65,
            num_inference_steps: int = 100,
            nmb_max_branches_highres: int = 5,
            nmb_max_branches_lowres: int = 6,
            duration_single_segment=3,
            fps=24,
            fixed_seeds: Optional[List[int]] = None):
        r"""
        Runs upscaling with the x4 model. Requires that you run a transition before with a low-res model and save the results using write_imgs_transition.

        Args:
            dp_img: str
                Path to the low-res transition path (as saved in write_imgs_transition)
            depth_strength:
                Determines how deep the first injection will happen.
                Deeper injections will cause (unwanted) formation of new structures,
                more shallow values will go into alpha-blendy land.
            num_inference_steps:
                Number of diffusion steps. Higher values will take more compute time.
            nmb_max_branches_highres: int
                Number of final branches of the upscaling transition pass. Note this is the number
                of branches between each pair of low-res images.
            nmb_max_branches_lowres: int
                Number of input low-res images, subsampling all transition images written in the low-res pass.
                Setting this number lower (e.g. 6) will decrease the compute time but not affect the results too much.
            duration_single_segment: float
                The duration of each high-res movie segment. You will have nmb_max_branches_lowres-1 segments in total.
            fps: float
                frames per second of movie
            fixed_seeds: Optional[List[int)]:
                You can supply two seeds that are used for the first and second keyframe (prompt1 and prompt2).
                Otherwise random seeds will be taken.
        """
        fp_yml = os.path.join(dp_img, "lowres.yaml")
        fp_movie = os.path.join(dp_img, "movie_highres.mp4")
        ms = MovieSaver(fp_movie, fps=fps)
        assert os.path.isfile(fp_yml), "lowres.yaml does not exist. did you forget run_upscaling_step1?"
        dict_stuff = yml_load(fp_yml)

        # load lowres images
        nmb_images_lowres = dict_stuff['nmb_images']
        prompt1 = dict_stuff['prompt1']
        prompt2 = dict_stuff['prompt2']
        idx_img_lowres = np.round(np.linspace(0, nmb_images_lowres - 1, nmb_max_branches_lowres)).astype(np.int32)
        imgs_lowres = []
        for i in idx_img_lowres:
            fp_img_lowres = os.path.join(dp_img, f"lowres_img_{str(i).zfill(4)}.jpg")
            assert os.path.isfile(fp_img_lowres), f"{fp_img_lowres} does not exist. did you forget run_upscaling_step1?"
            imgs_lowres.append(Image.open(fp_img_lowres))

        # set up upscaling
        text_embeddingA = self.sdh.get_text_embedding(prompt1)
        text_embeddingB = self.sdh.get_text_embedding(prompt2)
        list_fract_mixing = np.linspace(0, 1, nmb_max_branches_lowres - 1)
        for i in range(nmb_max_branches_lowres - 1):
            print(f"Starting movie segment {i+1}/{nmb_max_branches_lowres-1}")
            self.text_embedding1 = interpolate_linear(text_embeddingA, text_embeddingB, list_fract_mixing[i])
            self.text_embedding2 = interpolate_linear(text_embeddingA, text_embeddingB, 1 - list_fract_mixing[i])
            if i == 0:
                recycle_img1 = False
            else:
                self.swap_forward()
                recycle_img1 = True

            self.set_image1(imgs_lowres[i])
            self.set_image2(imgs_lowres[i + 1])

            list_imgs = self.run_transition(
                recycle_img1=recycle_img1,
                recycle_img2=False,
                num_inference_steps=num_inference_steps,
                depth_strength=depth_strength,
                nmb_max_branches=nmb_max_branches_highres)
            list_imgs_interp = add_frames_linear_interp(list_imgs, fps, duration_single_segment)

            # Save movie frame
            for img in list_imgs_interp:
                ms.write_frame(img)
        ms.finalize()

    @torch.no_grad()
    def get_mixed_conditioning(self, fract_mixing):
        if self.mode == 'standard':
            text_embeddings_mix = interpolate_linear(self.text_embedding1, self.text_embedding2, fract_mixing)
            list_conditionings = [text_embeddings_mix]
        elif self.mode == 'inpaint':
            text_embeddings_mix = interpolate_linear(self.text_embedding1, self.text_embedding2, fract_mixing)
            list_conditionings = [text_embeddings_mix]
        elif self.mode == 'upscale':
            text_embeddings_mix = interpolate_linear(self.text_embedding1, self.text_embedding2, fract_mixing)
            cond, uc_full = self.sdh.get_cond_upscaling(self.image1_lowres, text_embeddings_mix, self.noise_level_upscaling)
            condB, uc_fullB = self.sdh.get_cond_upscaling(self.image2_lowres, text_embeddings_mix, self.noise_level_upscaling)
            cond['c_concat'][0] = interpolate_spherical(cond['c_concat'][0], condB['c_concat'][0], fract_mixing)
            uc_full['c_concat'][0] = interpolate_spherical(uc_full['c_concat'][0], uc_fullB['c_concat'][0], fract_mixing)
            list_conditionings = [cond, uc_full]
        else:
            raise ValueError(f"mix_conditioning: unknown mode {self.mode}")
        return list_conditionings

    @torch.no_grad()
    def get_text_embeddings(
            self,
            prompt: str):
        r"""
        Computes the text embeddings provided a string with a prompts.
        Adapted from stable diffusion repo
        Args:
            prompt: str
                ABC trending on artstation painted by Old Greg.
        """
        return self.sdh.get_text_embedding(prompt)

    def write_imgs_transition(self, dp_img):
        r"""
        Writes the transition images into the folder dp_img.
        Requires run_transition to be completed.
        Args:
            dp_img: str
                Directory, into which the transition images, yaml file and latents are written.
        """
        imgs_transition = self.tree_final_imgs
        os.makedirs(dp_img, exist_ok=True)
        for i, img in enumerate(imgs_transition):
            img_leaf = Image.fromarray(img)
            img_leaf.save(os.path.join(dp_img, f"lowres_img_{str(i).zfill(4)}.jpg"))
        fp_yml = os.path.join(dp_img, "lowres.yaml")
        self.save_statedict(fp_yml)

    def write_movie_transition(self, fp_movie, duration_transition, fps=30):
        r"""
        Writes the transition movie to fp_movie, using the given duration and fps..
        The missing frames are linearly interpolated.
        Args:
            fp_movie: str
                file pointer to the final movie.
            duration_transition: float
                duration of the movie in seonds
            fps: int
                fps of the movie
        """

        # Let's get more cheap frames via linear interpolation (duration_transition*fps frames)
        imgs_transition_ext = add_frames_linear_interp(self.tree_final_imgs, duration_transition, fps)

        # Save as MP4
        if os.path.isfile(fp_movie):
            os.remove(fp_movie)
        ms = MovieSaver(fp_movie, fps=fps, shape_hw=[self.sdh.height, self.sdh.width])
        for img in tqdm(imgs_transition_ext):
            ms.write_frame(img)
        ms.finalize()

    def save_statedict(self, fp_yml):
        # Dump everything relevant into yaml
        imgs_transition = self.tree_final_imgs
        state_dict = self.get_state_dict()
        state_dict['nmb_images'] = len(imgs_transition)
        yml_save(fp_yml, state_dict)

    def get_state_dict(self):
        state_dict = {}
        grab_vars = ['prompt1', 'prompt2', 'seed1', 'seed2', 'height', 'width',
                     'num_inference_steps', 'depth_strength', 'guidance_scale',
                     'guidance_scale_mid_damper', 'mid_compression_scaler', 'negative_prompt',
                     'branch1_crossfeed_power', 'branch1_crossfeed_range', 'branch1_crossfeed_decay'
                     'parental_crossfeed_power', 'parental_crossfeed_range', 'parental_crossfeed_power_decay']
        for v in grab_vars:
            if hasattr(self, v):
                if v == 'seed1' or v == 'seed2':
                    state_dict[v] = int(getattr(self, v))
                elif v == 'guidance_scale':
                    state_dict[v] = float(getattr(self, v))

                else:
                    try:
                        state_dict[v] = getattr(self, v)
                    except Exception:
                        pass
        return state_dict

    def randomize_seed(self):
        r"""
        Set a random seed for a fresh start.
        """
        seed = np.random.randint(999999999)
        self.set_seed(seed)

    def set_seed(self, seed: int):
        r"""
        Set a the seed for a fresh start.
        """
        self.seed = seed
        self.sdh.seed = seed

    def set_width(self, width):
        r"""
        Set the width of the resulting image.
        """
        assert np.mod(width, 64) == 0, "set_width: value needs to be divisible by 64"
        self.width = width
        self.sdh.width = width

    def set_height(self, height):
        r"""
        Set the height of the resulting image.
        """
        assert np.mod(height, 64) == 0, "set_height: value needs to be divisible by 64"
        self.height = height
        self.sdh.height = height

    def swap_forward(self):
        r"""
        Moves over keyframe two -> keyframe one. Useful for making a sequence of transitions
        as in run_multi_transition()
        """
        # Move over all latents
        self.tree_latents[0] = self.tree_latents[-1]
        # Move over prompts and text embeddings
        self.prompt1 = self.prompt2
        self.text_embedding1 = self.text_embedding2
        # Final cleanup for extra sanity
        self.tree_final_imgs = []

    def get_lpips_similarity(self, imgA, imgB):
        r"""
        Computes the image similarity between two images imgA and imgB.
        Used to determine the optimal point of insertion to create smooth transitions.
        High values indicate low similarity.
        """
        tensorA = torch.from_numpy(imgA).float().cuda(self.device)
        tensorA = 2 * tensorA / 255.0 - 1
        tensorA = tensorA.permute([2, 0, 1]).unsqueeze(0)
        tensorB = torch.from_numpy(imgB).float().cuda(self.device)
        tensorB = 2 * tensorB / 255.0 - 1
        tensorB = tensorB.permute([2, 0, 1]).unsqueeze(0)
        lploss = self.lpips(tensorA, tensorB)
        lploss = float(lploss[0][0][0][0])
        return lploss

    # Auxiliary functions
    def get_closest_idx(
            self,
            fract_mixing: float):
        r"""
        Helper function to retrieve the parents for any given mixing.
        Example: fract_mixing = 0.4 and self.tree_fracts = [0, 0.3, 0.6, 1.0]
        Will return the two closest values here, i.e. [1, 2]
        """

        pdist = fract_mixing - np.asarray(self.tree_fracts)
        pdist_pos = pdist.copy()
        pdist_pos[pdist_pos < 0] = np.inf
        b_parent1 = np.argmin(pdist_pos)
        pdist_neg = -pdist.copy()
        pdist_neg[pdist_neg <= 0] = np.inf
        b_parent2 = np.argmin(pdist_neg)

        if b_parent1 > b_parent2:
            tmp = b_parent2
            b_parent2 = b_parent1
            b_parent1 = tmp

        return b_parent1, b_parent2