File size: 15,224 Bytes
8d783eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
# Copyright 2022 Lunar Ring. All rights reserved.
# Written by Johannes Stelzer, email [email protected] twitter @j_stelzer
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import torch
torch.backends.cudnn.benchmark = False
torch.set_grad_enabled(False)
import numpy as np
import warnings
warnings.filterwarnings('ignore')
import warnings
import torch
from PIL import Image
import torch
from typing import Optional
from omegaconf import OmegaConf
from torch import autocast
from contextlib import nullcontext
from ldm.util import instantiate_from_config
from ldm.models.diffusion.ddim import DDIMSampler
from einops import repeat, rearrange
from utils import interpolate_spherical


def pad_image(input_image):
    pad_w, pad_h = np.max(((2, 2), np.ceil(
        np.array(input_image.size) / 64).astype(int)), axis=0) * 64 - input_image.size
    im_padded = Image.fromarray(
        np.pad(np.array(input_image), ((0, pad_h), (0, pad_w), (0, 0)), mode='edge'))
    return im_padded


def make_batch_superres(
        image,
        txt,
        device,
        num_samples=1):
    image = np.array(image.convert("RGB"))
    image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0
    batch = {
        "lr": rearrange(image, 'h w c -> 1 c h w'),
        "txt": num_samples * [txt],
    }
    batch["lr"] = repeat(batch["lr"].to(device=device),
                         "1 ... -> n ...", n=num_samples)
    return batch


def make_noise_augmentation(model, batch, noise_level=None):
    x_low = batch[model.low_scale_key]
    x_low = x_low.to(memory_format=torch.contiguous_format).float()
    x_aug, noise_level = model.low_scale_model(x_low, noise_level)
    return x_aug, noise_level


class StableDiffusionHolder:
    def __init__(self,
                 fp_ckpt: str = None,
                 fp_config: str = None,
                 num_inference_steps: int = 30,
                 height: Optional[int] = None,
                 width: Optional[int] = None,
                 device: str = None,
                 precision: str = 'autocast',
                 ):
        r"""
        Initializes the stable diffusion holder, which contains the models and sampler.
        Args:
            fp_ckpt: File pointer to the .ckpt model file
            fp_config: File pointer to the .yaml config file
            num_inference_steps: Number of diffusion iterations. Will be overwritten by latent blending.
            height: Height of the resulting image.
            width: Width of the resulting image.
            device: Device to run the model on.
            precision: Precision to run the model on.
        """
        self.seed = 42
        self.guidance_scale = 5.0

        if device is None:
            self.device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
        else:
            self.device = device
        self.precision = precision
        self.init_model(fp_ckpt, fp_config)

        self.f = 8  # downsampling factor, most often 8 or 16"
        self.C = 4
        self.ddim_eta = 0
        self.num_inference_steps = num_inference_steps

        if height is None and width is None:
            self.init_auto_res()
        else:
            assert height is not None, "specify both width and height"
            assert width is not None, "specify both width and height"
            self.height = height
            self.width = width

        self.negative_prompt = [""]

    def init_model(self, fp_ckpt, fp_config):
        r"""Loads the models and sampler.
        """

        assert os.path.isfile(fp_ckpt), f"Your model checkpoint file does not exist: {fp_ckpt}"
        self.fp_ckpt = fp_ckpt

        # Auto init the config?
        if fp_config is None:
            fn_ckpt = os.path.basename(fp_ckpt)
            if 'depth' in fn_ckpt:
                fp_config = 'configs/v2-midas-inference.yaml'
            elif 'upscaler' in fn_ckpt:
                fp_config = 'configs/x4-upscaling.yaml'
            elif '512' in fn_ckpt:
                fp_config = 'configs/v2-inference.yaml'
            elif '768' in fn_ckpt:
                fp_config = 'configs/v2-inference-v.yaml'
            elif 'v1-5' in fn_ckpt:
                fp_config = 'configs/v1-inference.yaml'
            else:
                raise ValueError("auto detect of config failed. please specify fp_config manually!")

            assert os.path.isfile(fp_config), "Auto-init of the config file failed. Please specify manually."

        assert os.path.isfile(fp_config), f"Your config file does not exist: {fp_config}"

        config = OmegaConf.load(fp_config)

        self.model = instantiate_from_config(config.model)
        self.model.load_state_dict(torch.load(fp_ckpt)["state_dict"], strict=False)

        self.model = self.model.to(self.device)
        self.sampler = DDIMSampler(self.model)

    def init_auto_res(self):
        r"""Automatically set the resolution to the one used in training.
        """
        if '768' in self.fp_ckpt:
            self.height = 768
            self.width = 768
        else:
            self.height = 512
            self.width = 512

    def set_negative_prompt(self, negative_prompt):
        r"""Set the negative prompt. Currenty only one negative prompt is supported
        """

        if isinstance(negative_prompt, str):
            self.negative_prompt = [negative_prompt]
        else:
            self.negative_prompt = negative_prompt

        if len(self.negative_prompt) > 1:
            self.negative_prompt = [self.negative_prompt[0]]

    def get_text_embedding(self, prompt):
        c = self.model.get_learned_conditioning(prompt)
        return c

    @torch.no_grad()
    def get_cond_upscaling(self, image, text_embedding, noise_level):
        r"""
        Initializes the conditioning for the x4 upscaling model.
        """
        image = pad_image(image)  # resize to integer multiple of 32
        w, h = image.size
        noise_level = torch.Tensor(1 * [noise_level]).to(self.sampler.model.device).long()
        batch = make_batch_superres(image, txt="placeholder", device=self.device, num_samples=1)

        x_augment, noise_level = make_noise_augmentation(self.model, batch, noise_level)

        cond = {"c_concat": [x_augment], "c_crossattn": [text_embedding], "c_adm": noise_level}
        # uncond cond
        uc_cross = self.model.get_unconditional_conditioning(1, "")
        uc_full = {"c_concat": [x_augment], "c_crossattn": [uc_cross], "c_adm": noise_level}
        return cond, uc_full

    @torch.no_grad()
    def run_diffusion_standard(
            self,
            text_embeddings: torch.FloatTensor,
            latents_start: torch.FloatTensor,
            idx_start: int = 0,
            list_latents_mixing=None,
            mixing_coeffs=0.0,
            spatial_mask=None,
            return_image: Optional[bool] = False):
        r"""
        Diffusion standard version.
        Args:
            text_embeddings: torch.FloatTensor
                Text embeddings used for diffusion
            latents_for_injection: torch.FloatTensor or list
                Latents that are used for injection
            idx_start: int
                Index of the diffusion process start and where the latents_for_injection are injected
            mixing_coeff:
                mixing coefficients for latent blending
            spatial_mask:
                experimental feature for enforcing pixels from list_latents_mixing
            return_image: Optional[bool]
                Optionally return image directly
        """
        # Asserts
        if type(mixing_coeffs) == float:
            list_mixing_coeffs = self.num_inference_steps * [mixing_coeffs]
        elif type(mixing_coeffs) == list:
            assert len(mixing_coeffs) == self.num_inference_steps
            list_mixing_coeffs = mixing_coeffs
        else:
            raise ValueError("mixing_coeffs should be float or list with len=num_inference_steps")

        if np.sum(list_mixing_coeffs) > 0:
            assert len(list_latents_mixing) == self.num_inference_steps

        precision_scope = autocast if self.precision == "autocast" else nullcontext
        with precision_scope("cuda"):
            with self.model.ema_scope():
                if self.guidance_scale != 1.0:
                    uc = self.model.get_learned_conditioning(self.negative_prompt)
                else:
                    uc = None
                self.sampler.make_schedule(ddim_num_steps=self.num_inference_steps - 1, ddim_eta=self.ddim_eta, verbose=False)
                latents = latents_start.clone()
                timesteps = self.sampler.ddim_timesteps
                time_range = np.flip(timesteps)
                total_steps = timesteps.shape[0]
                # Collect latents
                list_latents_out = []
                for i, step in enumerate(time_range):
                    # Set the right starting latents
                    if i < idx_start:
                        list_latents_out.append(None)
                        continue
                    elif i == idx_start:
                        latents = latents_start.clone()
                    # Mix latents
                    if i > 0 and list_mixing_coeffs[i] > 0:
                        latents_mixtarget = list_latents_mixing[i - 1].clone()
                        latents = interpolate_spherical(latents, latents_mixtarget, list_mixing_coeffs[i])

                    if spatial_mask is not None and list_latents_mixing is not None:
                        latents = interpolate_spherical(latents, list_latents_mixing[i - 1], 1 - spatial_mask)

                    index = total_steps - i - 1
                    ts = torch.full((1,), step, device=self.device, dtype=torch.long)
                    outs = self.sampler.p_sample_ddim(latents, text_embeddings, ts, index=index, use_original_steps=False,
                                                      quantize_denoised=False, temperature=1.0,
                                                      noise_dropout=0.0, score_corrector=None,
                                                      corrector_kwargs=None,
                                                      unconditional_guidance_scale=self.guidance_scale,
                                                      unconditional_conditioning=uc,
                                                      dynamic_threshold=None)
                    latents, pred_x0 = outs
                    list_latents_out.append(latents.clone())
                if return_image:
                    return self.latent2image(latents)
                else:
                    return list_latents_out

    @torch.no_grad()
    def run_diffusion_upscaling(
            self,
            cond,
            uc_full,
            latents_start: torch.FloatTensor,
            idx_start: int = -1,
            list_latents_mixing: list = None,
            mixing_coeffs: float = 0.0,
            return_image: Optional[bool] = False):
        r"""
        Diffusion upscaling version.
        """

        # Asserts
        if type(mixing_coeffs) == float:
            list_mixing_coeffs = self.num_inference_steps * [mixing_coeffs]
        elif type(mixing_coeffs) == list:
            assert len(mixing_coeffs) == self.num_inference_steps
            list_mixing_coeffs = mixing_coeffs
        else:
            raise ValueError("mixing_coeffs should be float or list with len=num_inference_steps")

        if np.sum(list_mixing_coeffs) > 0:
            assert len(list_latents_mixing) == self.num_inference_steps

        precision_scope = autocast if self.precision == "autocast" else nullcontext
        h = uc_full['c_concat'][0].shape[2]
        w = uc_full['c_concat'][0].shape[3]
        with precision_scope("cuda"):
            with self.model.ema_scope():

                shape_latents = [self.model.channels, h, w]
                self.sampler.make_schedule(ddim_num_steps=self.num_inference_steps - 1, ddim_eta=self.ddim_eta, verbose=False)
                C, H, W = shape_latents
                size = (1, C, H, W)
                b = size[0]
                latents = latents_start.clone()
                timesteps = self.sampler.ddim_timesteps
                time_range = np.flip(timesteps)
                total_steps = timesteps.shape[0]
                # collect latents
                list_latents_out = []
                for i, step in enumerate(time_range):
                    # Set the right starting latents
                    if i < idx_start:
                        list_latents_out.append(None)
                        continue
                    elif i == idx_start:
                        latents = latents_start.clone()
                    # Mix the latents.
                    if i > 0 and list_mixing_coeffs[i] > 0:
                        latents_mixtarget = list_latents_mixing[i - 1].clone()
                        latents = interpolate_spherical(latents, latents_mixtarget, list_mixing_coeffs[i])
                    # print(f"diffusion iter {i}")
                    index = total_steps - i - 1
                    ts = torch.full((b,), step, device=self.device, dtype=torch.long)
                    outs = self.sampler.p_sample_ddim(latents, cond, ts, index=index, use_original_steps=False,
                                                      quantize_denoised=False, temperature=1.0,
                                                      noise_dropout=0.0, score_corrector=None,
                                                      corrector_kwargs=None,
                                                      unconditional_guidance_scale=self.guidance_scale,
                                                      unconditional_conditioning=uc_full,
                                                      dynamic_threshold=None)
                    latents, pred_x0 = outs
                    list_latents_out.append(latents.clone())

                if return_image:
                    return self.latent2image(latents)
                else:
                    return list_latents_out

    @torch.no_grad()
    def latent2image(
            self,
            latents: torch.FloatTensor):
        r"""
        Returns an image provided a latent representation from diffusion.
        Args:
            latents: torch.FloatTensor
                Result of the diffusion process.
        """
        x_sample = self.model.decode_first_stage(latents)
        x_sample = torch.clamp((x_sample + 1.0) / 2.0, min=0.0, max=1.0)
        x_sample = 255 * x_sample[0, :, :].permute([1, 2, 0]).cpu().numpy()
        image = x_sample.astype(np.uint8)
        return image