File size: 40,332 Bytes
dad00c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
import pandas as pd
import polars as pl
import numpy as np
import json
import gc
import folium
import html
from matplotlib import pyplot as plt
import seaborn as sns
import xgboost as xgb
from xgboost import plot_importance
from bs4 import BeautifulSoup
import plotly.express as px
import plotly.graph_objects as go
import plotly.figure_factory as ff
from plotly.subplots import make_subplots
import plotly.io as pio
from statsmodels.graphics.tsaplots import plot_pacf, plot_acf
from statsmodels.tsa.stattools import kpss, adfuller
from bertopic import BERTopic
from collections import defaultdict

color_pal = sns.color_palette("tab10")

impute_cols = [
    'MeanTemp', 'MinTemp', 'MaxTemp', 'DewPoint',
    'Percipitation', 'WindSpeed', 'MaxSustainedWind',
    'Gust', 'Rain', 'SnowDepth', 'SnowIce',
]

def convert_schema_to_polars(schema):
    pl_schema = {}
    for k, v in schema.items():
        if v == "String":
            pl_schema[k] = pl.String
        elif v == "Float64":
            pl_schema[k] = pl.Float64
        elif v == "Int64":
            pl_schema[k] = pl.Int64
    return pl_schema


def create_datetime(data, dt_col, format="%m/%d/%Y %I:%M:%S %p"):
    # df type is either pandas or polars
    df_type = "pandas" if isinstance(data, pd.DataFrame) else "polars"
    if "datetime" in str(data[dt_col].dtype).lower():
        return data
    
    if df_type == "pandas":
        data[dt_col] = pd.to_datetime(data[dt_col], format=format)
    elif df_type == "polars":
        data = data.with_columns(
            pl.col(dt_col).str.strptime(pl.Date, format=format).cast(pl.Datetime)
        )

    return data


def create_seasons(data, dt_col="Datetime", out_col="Season", prefix=""):
    df_type = "pandas" if isinstance(data, pd.DataFrame) else "polars"
    out_col = prefix + out_col
    spring_start = pd.to_datetime("2018-3-20", format = "%Y-%m-%d").dayofyear
    summer_start = pd.to_datetime("2018-6-21", format = "%Y-%m-%d").dayofyear
    autumn_start = pd.to_datetime("2018-9-22", format = "%Y-%m-%d").dayofyear
    winter_start = pd.to_datetime("2018-12-21", format = "%Y-%m-%d").dayofyear

    if df_type == "pandas":
        def map_season(date):
            if date.dayofyear < spring_start or date.dayofyear >= winter_start:
                return "Winter"
            elif date.dayofyear >= spring_start and date.dayofyear < summer_start:
                return "Spring"
            elif date.dayofyear >= summer_start and date.dayofyear < autumn_start:
                return "Summer"
            elif date.dayofyear >= autumn_start and date.dayofyear < winter_start:
                return "Autumn" 
        data[out_col] = data[dt_col].apply(map_season)
        return data

    elif df_type == "polars":

        def map_season(date):
            # for date in dates:
            if date.timetuple().tm_yday < spring_start or date.timetuple().tm_yday >= winter_start:
                return "Winter"
            elif date.timetuple().tm_yday >= spring_start and date.timetuple().tm_yday < summer_start:
                return "Spring"
            elif date.timetuple().tm_yday >= summer_start and date.timetuple().tm_yday < autumn_start:
                return "Summer"
            elif date.timetuple().tm_yday >= autumn_start and date.timetuple().tm_yday < winter_start:
                return "Autumn"
        
        data = data.with_columns(
            pl.col(dt_col).map_elements(map_season, return_dtype=pl.String).alias(out_col)
        )
        return data


def create_weekend(data, dt_col="Datetime", out_col="is_weekend", prefix=""):
    df_type = "pandas" if isinstance(data, pd.DataFrame) else "polars"
    out_col = prefix + out_col

    if df_type == "pandas":
        data[out_col] = (data[dt_col].dt.weekday.isin([5,6])).astype(np.int8)

    elif df_type == "polars":
        data = data.with_columns(
            pl.col(dt_col).dt.weekday().is_in([6,7]).cast(pl.Int8).alias(out_col)
        )
    
    return data


def create_holidays(data, dt_col="Datetime", out_col="is_holiday", prefix=""):
    df_type = "pandas" if isinstance(data, pd.DataFrame) else "polars"
    out_col = prefix + out_col

    # The only holiday not included will be new years as I expect a potential affect
    HOLIDAYS = [
        pd.to_datetime("2016-01-18"), pd.to_datetime("2016-02-15"),
        pd.to_datetime("2016-05-30"), pd.to_datetime("2016-07-04"), pd.to_datetime("2016-09-05"),
        pd.to_datetime("2016-10-10"), pd.to_datetime("2016-11-11"), pd.to_datetime("2016-11-24"),
        # Christmas is variable (depends on what day is actually holiday vs. what day is XMAS)
        pd.to_datetime("2016-12-24"), pd.to_datetime("2016-12-25"), pd.to_datetime("2016-12-26"),


        pd.to_datetime("2017-01-16"), pd.to_datetime("2017-02-20"),
        pd.to_datetime("2017-05-29"), pd.to_datetime("2017-07-04"), pd.to_datetime("2017-09-04"),
        pd.to_datetime("2017-10-09"), pd.to_datetime("2017-11-10"), pd.to_datetime("2017-11-23"),
        pd.to_datetime("2017-12-24"), pd.to_datetime("2017-12-25"),
        
        pd.to_datetime("2018-01-15"), pd.to_datetime("2018-02-19"),
        pd.to_datetime("2018-05-28"), pd.to_datetime("2018-07-04"), pd.to_datetime("2018-09-03"),
        pd.to_datetime("2018-10-08"), pd.to_datetime("2018-11-12"), pd.to_datetime("2018-11-22"),
        pd.to_datetime("2018-12-24"), pd.to_datetime("2018-12-25"),
    ]
    

    if df_type == "pandas":
        data[out_col] = (data[dt_col].isin(HOLIDAYS)).astype(np.int8)

    elif df_type == "polars":
        data = data.with_columns(
            pl.col(dt_col).dt.datetime().is_in(HOLIDAYS).cast(pl.Int8).alias(out_col)
        )
    return data


def build_temporal_features(data, dt_col, prefix=""):
    df_type = "pandas" if isinstance(data, pd.DataFrame) else "polars"
    if df_type == "pandas" and data.index.name == dt_col:
        data = data.reset_index()

    if df_type == "pandas":
        data[prefix+"Year"] = data[dt_col].dt.year.astype(np.int16)
        data[prefix+"Month"] = data[dt_col].dt.month.astype(np.int8)
        data[prefix+"Day"] = data[dt_col].dt.day.astype(np.int8)
        data[prefix+"DayOfYear"] = data[dt_col].dt.dayofyear.astype(np.int16)
        data[prefix+"DayOfWeek"] = data[dt_col].dt.dayofweek.astype(np.int8)
    else:
        data = data.with_columns (**{
            prefix+"Year": pl.col(dt_col).dt.year().cast(pl.Int16),
            prefix+"Month": pl.col(dt_col).dt.month().cast(pl.Int8),
            prefix+"Day": pl.col(dt_col).dt.day().cast(pl.Int8),
            prefix+"DayOfYear": pl.col(dt_col).dt.ordinal_day().cast(pl.Int16),
            prefix+"DayOfWeek": pl.col(dt_col).dt.weekday().cast(pl.Int8)
        })
    
    data = create_seasons(data, dt_col, prefix=prefix)
    data = create_weekend(data, dt_col, prefix=prefix)
    data = create_holidays(data, dt_col, prefix=prefix)
    return data


def agg_and_merge_historical(curr_df, hist_df, col, agg_cols=[], ops=["mean", "max", "min"]):
    merge_dict = {}
    for agg_col in agg_cols:
        describe_tb = hist_df.groupby(col)[agg_col].describe().reset_index()
        if col not in merge_dict:
            merge_dict[col] = describe_tb[col].values
        for op in ops:
            merge_col_name = "historical_" + col + "_" + op + "_" + agg_col
            if op == "mean":
                merge_dict[merge_col_name] = describe_tb["mean"].values
            elif op == "max":
                merge_dict[merge_col_name] = describe_tb["max"].values
            elif op == "min":
                merge_dict[merge_col_name] = describe_tb["min"].values
            elif op == "median":
                merge_dict[merge_col_name] = describe_tb["50%"].values
            elif op == "std":
                merge_dict[merge_col_name] = describe_tb["std"].values
    
    merge_df = pd.merge(curr_df, pd.DataFrame(merge_dict), on=col, how="left")
    return merge_df


def map_vals(data, cols=["Latitude", "Longitude"], label_cols=[], color="red", submap=None, weight=3, radius=1, sample_size=10000, start_loc=[42.1657, -74.9481], zoom_start=6):
    cols = cols
    df_type = "pandas" if isinstance(data, pd.DataFrame) or isinstance(data, pd.Series) else "polars"
    fig = folium.Figure(height=500, width=750)

    if submap is None:
        map_nyc = folium.Map(
            location=start_loc,
            zoom_start=zoom_start,
            tiles='cartodbpositron',
            zoom_control=False,
            scrollWheelZoom=False,
            dragging=False
        )
    else:
        map_nyc = submap

    cols.extend(label_cols)
    if df_type == "pandas":
        for idx, row in data.loc[:, cols].dropna().sample(sample_size).iterrows():
            label = ""
            lat, long = row.iloc[0,], row.iloc[1,]
            for i, label_col in enumerate(label_cols):
                label += label_col + ": " + str(row.iloc[2+i,]) + "\n"

            label_params = {"popup": label, "tooltip": label} if len(label_cols) > 0 else {}
            folium.CircleMarker(location=[lat, long], radius=radius, weight=weight, color=color, fill_color=color, fill_opacity=0.7, **label_params).add_to(map_nyc)
    else:
        for row in data[:, cols].drop_nulls().sample(sample_size).rows():
            label = ""
            lat, long = row[0], row[1]
            for i, label_col in enumerate(label_cols):
                label += label_col + ": " + str(row[2+i]) + "\n"
            
            label_params = {"popup": label, "tooltip": label} if len(label_cols) > 0 else {}
            folium.CircleMarker(location=[lat, long], radius=radius, weight=weight, color=color, fill_color=color, fill_opacity=0.7, **label_params).add_to(map_nyc)

    fig.add_child(map_nyc)
    return fig, map_nyc


def find_variable_data(soup, curr_var = "Created Date"):
    src = "<!doctype html>"
    # HTML and head start
    src += "<html lang=\"en\">"
    src += str(soup.find("head"))

    # Body -> content -> container -> row -> variable
    src += "<body style=\"background-color: var(--table-odd-background-fill); padding-top: 20px;\">"
    src += "<div class=\"content\" style=\"padding-left: 150px; padding-right: 150px; border: 0px !important; \">"
    # src += "<div class=\"container\">"
    src += "<div class=\"section-items\" style=\"background-color: white;\">"
    # src += "<div class=\"row spacing\">"
    variables_html = soup.find_all("div", class_="variable")
    for var_html in variables_html:
        if var_html.text[:len(curr_var)] == curr_var:
            parent = var_html.parent
            parent['style'] = "border: 0px"
            src += str(parent)
            break
    
    src += "</div></div>"

    # Scripts
    for script in soup.find_all("script"):
        src += str(script)

    # End
    src += "</body>"
    src += "</html>"

    # src = BeautifulSoup(src, 'html.parser').prettify()
    src_doc = html.escape(src)
    iframe = f'<iframe width="100%" height="1200px" srcdoc="{src_doc}" frameborder="0"></iframe>'
    return iframe, src_doc


def plot_autocorr(data, col, apply=None):
    time_series = data.loc[:, col].to_frame().copy()
    if apply:
        time_series[col] = time_series[col].apply(apply)
    fig, ax = plt.subplots(2, 1, figsize=(12, 8))
    _ = plot_acf(time_series[col], lags=30, ax=ax[0])
    _ = plot_pacf(time_series[col], lags=30, method="ols-adjusted", ax=ax[1])
    _ = plt.suptitle(f"{col}", y=0.95)
    return fig


def adf_test(timeseries): 
    dftest = adfuller(timeseries, autolag='AIC')
    dfoutput = pd.Series(dftest[0:4], index=['Test Statistic','p-value','Lags Used','Number of Observations Used'])
    dfoutput['Number of Observations Used'] = dfoutput['Number of Observations Used'].astype(np.int64)
    for key,value in dftest[4].items():
       dfoutput['Critical Value (%s)'%key] = value
    return dfoutput


def kpss_test(timeseries):
    kpsstest = kpss(timeseries, regression='ct')
    kpss_output = pd.Series(kpsstest[0:3], index=['Test Statistic','p-value','Lags Used'])
    for key,value in kpsstest[3].items():
      kpss_output['Critical Value (%s)'%key] = value
    return kpss_output


def test_stationary(data, var):
    adf_df = adf_test(data[var].dropna())
    kpss_df = kpss_test(data[var].dropna())
    result_df = adf_df.to_frame(name="Augmented-Dickey-Fuller")
    result_df["KPSS Test"] = kpss_df
    def pass_hypothesis(col):
        test_stat, p_val = col.iloc[0], col.iloc[1]
        one_p, five_p, ten_p = col.iloc[4], col.iloc[5], col.iloc[6]
        if col.name == "KPSS Test":
            if test_stat < one_p and p_val < 0.01:
                color_fmt = ["background-color: #fc5749; font-weight: bold; color: black"]
            elif test_stat < five_p and p_val < 0.05:
                color_fmt = ["background-color: #F88379; font-weight: bold; color: black"]
            elif test_stat < ten_p and p_val < 0.1:
                color_fmt = ["background-color: #ff9f96; font-weight: bold; color: black"]
            else:
                color_fmt = ["background-color: green; font-weight: bold; color: black"]
        else:
            if test_stat < one_p and p_val < 0.01:
                color_fmt = ["background-color: green; font-weight: bold; color: black"]
            elif test_stat < five_p and p_val < 0.05:
                color_fmt = ["background-color: greenyellow; font-weight: bold; color: black"]
            elif test_stat < ten_p and p_val < 0.1:
                color_fmt = ["background-color: lightgreen; font-weight: bold; color: black"]
            else:
                color_fmt = ["background-color: #fc5749; font-weight: bold; color: black"]
            
        color_fmt.extend(['' for _ in col[1:]])
        return color_fmt

    result_df.loc["Lags Used",:] = result_df.loc["Lags Used",:].astype(np.int32)
    return result_df.style.apply(pass_hypothesis)


def plot_timeseries(data, var, data_name="My", all_vars=[], height=800, width=600, start_date="2017-12-31", end_date="2018-12-31"):
    if var == "":
        return gr.update()

    fig = go.Figure()
    fig.add_trace(
        go.Scatter(
            x=data.index,
            y=data[var],
            name=var,
            customdata=np.dstack((data["Season"].to_numpy(), data.reset_index()["Datetime"].dt.day_name().to_numpy(), data["is_holiday"].astype(bool).to_numpy()))[0],
            hovertemplate='<br>value:%{y:.3f} <br>Season: %{customdata[0]} <br>Weekday: %{customdata[1]} <br>Is Holiday: %{customdata[2]}',
        )
    )
    fig.update_layout(
        autosize=True,
        title=f"{data_name} Time Series by {var}",
        xaxis_title='Date',
        yaxis_title=var,
        hovermode='x unified',
    )

    fig.update_layout(
        autosize=True,
        xaxis=dict(
            rangeselector=dict(
                buttons=list([
                    dict(count=7, label="1w", step="day", stepmode="backward"),
                    dict(count=21, label="3w", step="day", stepmode="backward"),
                    dict(count=1, label="1m", step="month", stepmode="backward"),
                    dict(count=6, label="6m", step="month", stepmode="backward"),
                    dict(count=1, label="1y", step="year", stepmode="backward"),
                    dict(step="all")
                ])
            ),
            rangeslider=dict(
                visible=True,
                # 
            ),
            type="date",
            range=(start_date, end_date),
        ),
    )
    return fig


def plot_bivariate(data, x, y, subset=None, trendline=True):
    title = f"Scatterplot of {x} vs. {y}"

    if subset == "None" or subset is None:
        subset = None
        height = 450
    else:
        subset_title = subset.replace(" String","")
        title += f" By {subset_title}"
        if subset_title in ["Season", "Year"]:
            height = 450
        else:
            height = 800

    if trendline:
        trendline = "ols"
    else:
        trendline = None   

    # Special case to view categorical features
    if x in ["Agency", "Borough", "Descriptor"]:
        if x == "Agency":
            prefix = 'AG' 
        elif x == "Borough":
            prefix = "Borough"
        else:
            prefix="DG"
            
        categories = [col for col in data.columns if prefix in col]
        melt_df = pd.melt(data, id_vars=["Target"], value_vars=categories)
        fig = px.scatter(
            melt_df,
            x="value",
            y="Target",
            trendline=trendline,
            facet_col="variable",
            facet_col_wrap=4,
            facet_col_spacing=0.05,
            title=title
        )
        height = 800

    else:
        fig = px.scatter(
            data,
            x=x, y=y,
            trendline=trendline,
            facet_col=subset,
            facet_col_wrap=4,
            facet_col_spacing=0.05,
            title=title
        )

    fig.update_layout(
        autosize=True,
        height=height,
    )

    return fig


def plot_seasonality(data, x, y, show_box=True, show_outliers=False):
    title = f"{y} by {x}"
    
    if show_box:
        if show_outliers:
            points = "outliers"
        else:
            points = "all"
        fig = px.box(data, x=x, y=y, points=points, title=title, facet_col_wrap=4, facet_col_spacing=0.05,)
    else:
        fig = px.strip(data, x=x, y=y, title=title, facet_col_wrap=4, facet_col_spacing=0.05,)

    fig.update_layout(
        autosize=True,
        height=600,
    )
    return fig


def build_service_data(filename):
    # Loading data directly with polars leads to errors
    # Some rows end up missing for an unknown reason
    # FIX: Load in pandas then convert to polars
    service_data_pd = pd.read_csv(filename)

    # Quick test to assure the unique key is in fact unique
    assert service_data_pd["Unique Key"].nunique() == len(service_data_pd)
    
    # Load from pandas Dataframe
    service_data_pd["Incident Zip"] = service_data_pd["Incident Zip"].astype("string")
    service_data_pd["BBL"] = service_data_pd["BBL"].astype("string")
    service_data = pl.DataFrame(service_data_pd)
    
    # Clear some ram
    del service_data_pd
    gc.collect()

    drop_cols = [
        "Unique Key", "Agency Name", "Location Type", "Incident Zip",
        "Incident Address", "Street Name", "Cross Street 1",
        "Cross Street 2", "Intersection Street 1", "Intersection Street 2",
        "Address Type", "City", "Landmark", "Facility Type",
        "Status", "Due Date", "Resolution Description",
        "Resolution Action Updated Date", "Community Board",
        "BBL", "X Coordinate (State Plane)", "Y Coordinate (State Plane)",
        "Open Data Channel Type", "Park Facility Name", "Park Borough",
        "Vehicle Type", "Taxi Company Borough", "Taxi Pick Up Location",
        "Bridge Highway Name", "Bridge Highway Direction", "Road Ramp",
        "Bridge Highway Segment", "Location", "Created Year"
    ]

    # Drop columns and create the date variable
    service_data = service_data.drop(drop_cols)
    service_data = create_datetime(service_data, "Created Date")
    service_data = create_datetime(service_data, "Closed Date")

    # Group by date to get the number of Created tickets (as target)
    sd_grouped = service_data.rename({"Created Date": "Datetime"}).group_by("Datetime").agg(
        pl.len().alias("Target"),
    ).sort(by="Datetime")

    # Calculate the number of closed tickets
    # Mean diff used to filter service data
    # mean_diff = service_data.with_columns(
    #     diff_created_closed = pl.col("Closed Date") - pl.col("Created Date")
    # ).filter((pl.col("Closed Date").dt.year() >= 2016) & (pl.col("Closed Date").dt.year() < 2020))["diff_created_closed"].mean().days
    # Mean diff precalculated as 
    mean_diff = 13

    # Create new Closed date with errors filled using the mean diff above
    service_data = service_data.with_columns(
        Closed_Date_New = pl.when(pl.col("Created Date") - pl.col("Closed Date")  > pl.duration(days=1))
                                .then(pl.col("Created Date") + pl.duration(days=mean_diff))
                                .otherwise(pl.col("Closed Date")).fill_null(pl.col("Created Date") + pl.duration(days=mean_diff))
    )

    # Filter tickets such that the closed date < the created date to prevent future data leakage in our dataset
    # We want to make sure future data is not accidentally leaked across other points in our data
    closed_tickets = service_data.group_by(["Closed_Date_New", "Created Date"]) \
        .agg((pl.when(pl.col("Created Date") <= pl.col("Closed_Date_New")).then(1).otherwise(0)).sum().alias("count")) \
        .sort("Closed_Date_New") \
        .filter((pl.col("Closed_Date_New").dt.year() >= 2016) & (pl.col("Closed_Date_New").dt.year() < 2019)) \
        .group_by("Closed_Date_New").agg(pl.col("count").sum().alias("num_closed_tickets"))

    # Rename this column to num closed tickets
    ct_df = closed_tickets.with_columns(
        pl.col("num_closed_tickets")
    )

    # Concat the new columns into our data
    sd_df = pl.concat([sd_grouped, ct_df.drop("Closed_Date_New")], how="horizontal")

    assert len(sd_grouped) == len(ct_df)

    # CATEGORICAL FEATURE MAPPING
    # MAPPING FOR BOROUGH
    Borough_Map = {
        "Unspecified": "OTHER",
        "2017": "OTHER",
        None: "OTHER",
        "2016": "OTHER"
    }
    service_data = service_data.with_columns(
        pl.col("Borough").replace(Borough_Map)
    )

    # MAPPING FOR AGENCY
    # This mapping was done Manually
    Agency_Map = {
        "NYPD": "Security", "HPD": "Buildings", "DOT": "Transportation",
        "DSNY": "Environment & Sanitation", "DEP": "Environment & Sanitation",
        "DOB": "Buildings", "DOE": "Buildings", "DPR": "Parks",
        "DOHMH": "Health", "DOF": "Other", "DHS": "Security",
        "TLC": "Transportation", "HRA": "Other", "DCA": "Other",
        "DFTA": "Other", "EDC": "Other", "DOITT": "Other", "OMB": "Other",
        "DCAS": "Other", "NYCEM": "Other", "ACS": "Other", "3-1-1": "Other",
        "TAX": "Other", "DCP": "Other", "DORIS": "Other", "FDNY": "Other",
        "TAT": "Other", "COIB": "Other", "CEO": "Other", "MOC": "Other",
    }
    
    service_data = service_data.with_columns(
        pl.col("Agency").replace(Agency_Map).alias("AG") # AG Shorthand for Agency Groups
    )


    # Mapping for Descriptor using BERTopic
    # Store descriptors as pandas dataframe (polars not supported)
    # Drop any nan values, and we only care about the unique values
    descriptor_docs = service_data["Descriptor"].unique().to_numpy()
    
    # Build our topic mapping using the pretrained BERTopic model
    # Load model and get predictions
    topic_model = BERTopic.load("models/BERTopic")
    topics, probs = topic_model.transform(descriptor_docs)
    
    # Visualize if wanted
    # topic_model.visualize_barchart(list(range(-1,6,1)))
    
    # Create a topic to ID map
    topic_df = topic_model.get_topic_info()
    topic_id_map = {row["Topic"]: row["Name"][2:] for _, row in topic_df.iterrows()}
    topic_id_map[-1] = topic_id_map[-1][1:] # Fix for the -1 topic case
    
    # For each document (descriptor string) get a mapping of topics
    doc_to_topic_map = defaultdict(str)
    for topic_id, doc in zip(topics, descriptor_docs):
        topic = topic_id_map[topic_id]
        doc_to_topic_map[doc] = topic
    
    service_data = service_data.with_columns(
        pl.col("Descriptor").replace(doc_to_topic_map).alias("DG") # DG Shorthand for descriptor Groups
    )
    
    
    # One Hot Encode Features
    cat_features = ["AG", "Borough", "DG"]
    service_data = service_data.to_dummies(columns=cat_features)
    
    
    # Group by Date and create our Category Feature Vector
    cat_df = service_data.rename({"Created Date": "Datetime"}).group_by("Datetime").agg(
        # Categorical Features Sum
        pl.col('^AG_.*$').sum(),
        pl.col('^Borough_.*$').sum(),
        pl.col('^DG_.*$').sum(),
    ).sort(by="Datetime")
    
    # Concat our category features to our current dataframe
    sd_df = pl.concat([sd_df, cat_df.drop("Datetime")], how="horizontal")
    
    # Now that our dataframe is significantly reduced in size
    # We can finally convert back to a pandas dataframe
    # as pandas is usable across more python packages
    sd_df = sd_df.to_pandas()
    
    # Set index to datetime
    sd_df = sd_df.set_index("Datetime")
    
    # NOTE we added 7 new rows to our weather df 
    # These 7 new rows will essentially be our final pred set
    # The Target for these rows will be null -> indicating it needs to be predicted
    # Add these rows to the service dataframe
    preds_df = pd.DataFrame({'Datetime': pd.date_range(start=sd_df.index[-1], periods=8, freq='D')})[1:]
    sd_df = pd.concat([sd_df, preds_df.set_index("Datetime")], axis=0)

    return sd_df


# Build all weather data from file
def build_weather_data(filename):
    # Use pandas to read file
    weather_data = pd.read_csv(filename)
    
    # Quickly aggregate Year, Month, Day into a datetime object
    # This is because the 311 data uses datetime
    weather_data["Datetime"] = weather_data["Year"].astype("str") + "-" + weather_data["Month"].astype("str") + "-" + weather_data["Day"].astype("str")
    weather_data = create_datetime(weather_data, "Datetime", format="%Y-%m-%d")

    # LOCALIZE
    # Pre-recorded min/max values from the service data (so we don't need again)
    lat_min = 40.49804421521046
    lat_max = 40.91294056699566
    long_min = -74.25521082506387
    long_max = -73.70038354802529

    # Create the conditions for location matching
    mincon_lat = weather_data["Latitude"] >= lat_min
    maxcon_lat = weather_data["Latitude"] <= lat_max
    mincon_long = weather_data["Longitude"] >= long_min
    maxcon_long = weather_data["Longitude"] <= long_max

    # Localize our data to match the service data
    wd_localized = weather_data.loc[mincon_lat & maxcon_lat & mincon_long & maxcon_long]
    drop_cols = [
        "USAF",
        "WBAN",
        "StationName",
        "State",
        "Latitude",
        "Longitude"
    ]
    wd_localized = wd_localized.drop(columns=drop_cols)

    # AGGREGATE
    # Map columns with aggregation method
    mean_cols = [
        'MeanTemp',
        'DewPoint',
        'Percipitation',
        'WindSpeed',
        'Gust',
        'SnowDepth',
    ]
    min_cols = [
        'MinTemp'
    ]
    max_cols = [
        'MaxTemp',
        'MaxSustainedWind'
    ]
    round_cols = [
        'Rain',
        'SnowIce'
    ]

    # Perform Aggregation
    mean_df = wd_localized.groupby("Datetime")[mean_cols].mean()
    min_df = wd_localized.groupby("Datetime")[min_cols].min()
    max_df = wd_localized.groupby("Datetime")[max_cols].max()
    round_df = wd_localized.groupby("Datetime")[round_cols].mean().round().astype(np.int8)
    wd_full = pd.concat([mean_df, min_df, max_df, round_df], axis=1)

    # Add seasonal features
    wd_full = build_temporal_features(wd_full, "Datetime")
    wd_full["Season"] = wd_full["Season"].astype("category")
    wd_full = wd_full.set_index("Datetime")
    
    # We will calculate the imputation for the next 7 days after 12/31/2018
    # Along with the 49 missing days
    # This will act as our "Weather Forecast"
    time_steps = 49 + 7
    
    # Impute Cols
    impute_cols = [
        'MeanTemp', 'MinTemp', 'MaxTemp', 'DewPoint',
        'Percipitation', 'WindSpeed', 'MaxSustainedWind',
        'Gust', 'Rain', 'SnowDepth', 'SnowIce',
    ]
    
    # Mean Vars
    mean_vars = ["WindSpeed", "MaxSustainedWind", "Gust", "SnowDepth"]
    min_vars = ["SnowIce", "MeanTemp", "MinTemp", "MaxTemp", "DewPoint", "Percipitation"]
    max_vars = ["Rain"]
    
    # Use the imported function to create the imputed data
    preds_mean = impute_missing_weather(wd_full, strategy="mean", time_steps=time_steps, impute_cols=mean_vars)
    preds_min = impute_missing_weather(wd_full, strategy="min", time_steps=time_steps, impute_cols=min_vars)
    preds_max = impute_missing_weather(wd_full, strategy="max", time_steps=time_steps, impute_cols=max_vars)
    all_preds = pd.concat([preds_mean, preds_min, preds_max], axis=1)
    all_preds = build_temporal_features(all_preds.loc[:, impute_cols], "Datetime")
    all_preds = all_preds.set_index("Datetime")

    wd_curr = wd_full.loc[wd_full["Year"] >= 2016]
    wd_df = pd.concat([wd_full, all_preds], axis=0, join="outer")

    time_vars = ["Year", "Month", "Day", "DayOfWeek", "DayOfYear", "is_weekend", "is_holiday", "Season"]
    wd_df.drop(columns=time_vars)

    return wd_df


class MyNaiveImputer():
    def __init__(self, data, time_steps=49, freq="D"):
        self.data = data.reset_index().copy()
        start_date = self.data["Datetime"].max() + pd.Timedelta(days=1)
        end_date = start_date + pd.Timedelta(days=time_steps-1)
        missing_range = pd.date_range(start_date, end_date, freq="D")
        self.missing_df = pd.DataFrame(missing_range, columns=["Datetime"])
        self.missing_df = build_temporal_features(self.missing_df, "Datetime")

    def impute(self, col, by="DayOfYear", strategy="mean"):
        def naive_impute_by(val, impute_X, data, by=by, strategy=strategy):
            if strategy.lower() == "mean":
                func = pd.core.groupby.DataFrameGroupBy.mean
            elif strategy.lower() == "median":
                func = pd.core.groupby.DataFrameGroupBy.median
            elif strategy.lower() == "max":
                func = pd.core.groupby.DataFrameGroupBy.max
            elif strategy.lower() == "min":
                func = pd.core.groupby.DataFrameGroupBy.min
            grouped = func(data.groupby(by)[impute_X])
            return grouped[val]
            
        return self.missing_df["DayOfYear"].apply(naive_impute_by, args=(col, self.data, by, strategy))
    
    def impute_all(self, cols, by="DayOfYear", strategy="mean"):
        output_df = self.missing_df.copy()
        for col in cols:
            output_df[col] = self.impute(col, by, strategy)
        return output_df


def impute_missing_weather(data, strategy="mean", time_steps=7, impute_cols=impute_cols):
    final_imputer = MyNaiveImputer(data, time_steps=time_steps)
    preds = final_imputer.impute_all(impute_cols, strategy=strategy).set_index("Datetime")
    return preds


def get_feature_importance(data, target, split_date="01-01-2016", print_score=False):
    import torch
    device = "cuda" if torch.cuda.is_available() else "cpu"

    train = data.loc[data.index <= pd.to_datetime(split_date)]
    test = data.loc[data.index > pd.to_datetime(split_date)]

    if type(target) == str:
        X_train, X_test = train.drop(columns=target), test.drop(columns=target)
        y_train, y_test = train[target], test[target]
    else:
        X_train, X_test = train, test
        y_train, y_test = target.loc[train.index], target.loc[test.index]
        target = str(target.name)

    if 'int' in y_train.dtype.name:
        # Use binary Classifier
        metric = "logloss"
        model = xgb.XGBClassifier(
            base_score=0.25,
            n_estimators=500,
            early_stopping_rounds=50,
            objective='binary:logistic',
            device=device,
            max_depth=3,
            learning_rate=0.01,
            enable_categorical=True,
            eval_metric="logloss",
            importance_type="gain",
            random_state=22,
        )
    else:
        metric = "MAPE"
        model = xgb.XGBRegressor(
            n_estimators=500,
            early_stopping_rounds=50,
            objective='reg:squarederror',
            device=device,
            max_depth=3,
            learning_rate=0.01,
            enable_categorical=True,
            eval_metric="mape",
            importance_type="gain",
            random_state=22,
        )

    _ = model.fit(
        X_train, y_train,
        eval_set=[(X_train, y_train), (X_test, y_test)],
        verbose=False
    )

    fig, ax = plt.subplots()
    ax = plot_importance(model, title=f"Feature Importance for {target}", ax=ax)
    if print_score:
        best_score = str(round(100*model.best_score,2))+"%"
        print(f"Best {metric}: {best_score}")
    return fig, model


def corr_with_lag(data, target_col, covar, lags=[1], method="pearson"):
    data_lagged = pd.DataFrame()
    data_lagged["Target"] = data[target_col]
    for lag in lags:
        new_col = f"lag_{lag}D"
        data_lagged[new_col] = data[covar].shift(lag)
    return data_lagged.dropna().corr(method=method)
    

def plot_correlations(data, target, covar, lags=[0,1,2,3,4,5,6,7,10,14,18,21], method="pearson"):
    df_corr = corr_with_lag(data, target, covar, lags, method)
    mask = np.triu(np.ones_like(df_corr, dtype=bool))
    z_dim, x_dim = len(df_corr.to_numpy()), len(df_corr.columns)
    y_dim = x_dim
    fig = ff.create_annotated_heatmap(
        z=df_corr.mask(mask).to_numpy(),
        x=df_corr.columns.tolist(),
        y=df_corr.columns.tolist(),
        colorscale=px.colors.diverging.RdBu,
        zmin=-1,
        zmax=1,
        ygap=2,
        xgap=2,
        name="",
        customdata=np.full((x_dim, y_dim, z_dim), covar),
        hovertemplate='%{customdata[0]}<br>%{x} to %{y}<br>Correlation: %{z:.4f}',
        showscale=True
    )

    fig.update_layout(
        title_text=f"Correlation Heatmap of Lagged {covar}",
        title_x=0.5,
        height=600,
        xaxis_showgrid=False,
        yaxis_showgrid=False,
        xaxis_zeroline=False,
        yaxis_zeroline=False,
        yaxis_autorange='reversed',
        template='plotly_white'
    )

    # fig.update_annotations(font=dict(color="black"))

    for i in range(len(fig.layout.annotations)):
        if fig.layout.annotations[i].text == 'nan':
            fig.layout.annotations[i].text = ""
        else:
            corr_i = round(float(fig.layout.annotations[i].text), 3)
            fig.layout.annotations[i].text = corr_i
            if (corr_i > 0.2 and corr_i < 0.5) or (corr_i < -0.2 and corr_i > -0.5):
                fig.layout.annotations[i].font.color = "white"
            
    return fig


def plot_all_correlations(data, data_name="weather", method="pearson", width=1392, height=600):
    if data_name == "weather":
        covars = ["MeanTemp", "MinTemp", "MaxTemp", 'DewPoint', 'Percipitation', 'WindSpeed', 'Gust', 'MaxSustainedWind', "SnowDepth", "SnowIce", "Rain", "Target"]
    elif data_name == "service":
        covars = [
            "num_closed_tickets",
            # Agency Group Counts
            'AG_Buildings', 'AG_Environment & Sanitation', 'AG_Health',
            'AG_Parks', 'AG_Security', 'AG_Transportation',
            'AG_Other',
            # Borough Counts
            'Borough_BRONX', 'Borough_BROOKLYN', 'Borough_MANHATTAN',
            'Borough_QUEENS', 'Borough_STATEN ISLAND',
            'Borough_OTHER', 
            # Descriptor Group Counts
            'DG_damaged_sign_sidewalk_missing',
            'DG_english_emergency_spanish_chinese',
            'DG_exemption_commercial_tax_business',
            'DG_license_complaint_illegal_violation', 'DG_noise_animal_truck_dead',
            'DG_odor_food_air_smoke', 'DG_order_property_inspection_condition',
            'DG_water_basin_litter_missed', "Target"
        ]

    df_corr = data.loc[:, covars].corr(method=method)

    mask = np.triu(np.ones_like(df_corr, dtype=bool))
    fig = ff.create_annotated_heatmap(
        z=df_corr.mask(mask).to_numpy(),
        x=df_corr.columns.tolist(),
        y=df_corr.columns.tolist(),
        colorscale=px.colors.diverging.RdBu,
        zmin=-1,
        zmax=1,
        ygap=2,
        xgap=2,
        name="",
        hovertemplate='%{x}-%{y} <br>Correlation: %{z:.4f}',
        showscale=True
    )


    fig.update_layout(
        title_text=f"Correlation Heatmap of Weather Variables & Target",
        title_x=0.5,
        height=600,
        width=width,
        xaxis_showgrid=False,
        yaxis_showgrid=False,
        xaxis_zeroline=False,
        yaxis_zeroline=False,
        yaxis_autorange='reversed',
        template='plotly_white'
    )

    fig.update_annotations(font=dict(color="black"))


    for i in range(len(fig.layout.annotations)):
        if fig.layout.annotations[i].text == 'nan':
            fig.layout.annotations[i].text = ""
        else:
            corr_i = round(float(fig.layout.annotations[i].text), 3)
            fig.layout.annotations[i].text = corr_i
            if corr_i > 0.5 or corr_i < -0.5:
                fig.layout.annotations[i].font.color = "white"

    return fig


def plot_gust_interpolation(data):
    fig, ax = plt.subplots(2, 2, figsize=(15,12))
    data["Gust_lin"].plot(ax=ax[0][0], color=color_pal[0], title="linear")
    data["Gust_spline3"].plot(ax=ax[0][1], color=color_pal[1], title="spline3")
    data["Gust_spline5"].plot(ax=ax[1][0], color=color_pal[2], title="spline5")
    data["Gust_quad"].plot(ax=ax[1][1], color=color_pal[3], title="quadratic")
    curr_fig = plt.gcf()
    plt.close()
    return curr_fig


def plot_train_split(train, val):
    fig = plt.subplots(figsize=(15, 5))
    ax = train["Target"].plot(label="Training Set")
    val["Target"].plot(label="Validation Set", ax=ax)
    ax.axvline('2018-04-01', color='black', ls='--')
    ax.legend()
    ax.set_title("Train Test Split (2018-04-01)")
    curr_fig = plt.gcf()
    plt.close()
    return curr_fig


def plot_predictions(train, val, preds):
    fig = plt.subplots(figsize=(16, 5))
    ax = train["Target"].plot(label="Training Set")
    val["Target"].plot(label="Validation Set", ax=ax)
    val["Prediction"] = preds
    val["Prediction"].plot(label="Prediction", ax=ax)
    ax.axvline('2018-04-01', color='black', ls='--')
    ax.legend()
    ax.set_title("Model Prediction for 311 Call Volume")
    
    curr_fig = plt.gcf()
    plt.close()
    return curr_fig

def plot_final_feature_importance(model):
    fig, ax = plt.subplots(figsize=(12,6))
    ax = plot_importance(model, max_num_features=20, title=f"Feature Importance for 311 Service Calls", ax=ax)

    curr_fig = plt.gcf()
    plt.close()

    return curr_fig 


def predict_recurse(dataset, test, model, features_to_impute=['Target_L1D', 'Target_Diff7D', 'Target_Diff14D'], last_feature='Target_L6D'):
    n_steps = len(test)
    merged_data = pd.concat([dataset[-14:], test], axis=0)
    all_index = merged_data.index
    X_test = test.drop(columns="Target")
    sd = -6 # Starting point for filling next value

    # For each step, get the predictions
    for i in range(n_steps-1):
        pred = model.predict(X_test)[i]
        # For the three features needed, compute the new value
        X_test.loc[all_index[sd+i], features_to_impute[0]] = pred
        X_test.loc[all_index[sd+i], features_to_impute[1]] = pred - merged_data.loc[all_index[sd+i-7], features_to_impute[1]]
        X_test.loc[all_index[sd+i], features_to_impute[2]] = pred - merged_data.loc[all_index[sd+i-14], features_to_impute[2]]

        # In the last iteration compute the Lag6D value
        if i == 5:
            X_test.loc[all_index[sd+i], last_feature] = pred - merged_data.loc[all_index[sd+i-6], last_feature]


    final_preds = model.predict(X_test)
    return final_preds