Spaces:
Sleeping
Sleeping
FEATURES["y_features"] = [] | |
col = FEATURES["y"][0] | |
new_features = data_preprocess[col].to_frame().copy() | |
# Lag Features | |
new_features[col+"_L1D"] = new_features[col].shift(1) | |
new_features[col+"_L6D"] = new_features[col].shift(6) | |
new_features[col+"_L7D"] = new_features[col].shift(7) | |
new_features[col+"_L8D"] = new_features[col].shift(8) | |
new_features[col+"_L14D"] = new_features[col].shift(14) | |
# Rolling Features | |
# After computing shift by 1 to indicate its computed based off a 1 day lag | |
new_features[col+"_RMean14D"] = new_features[col].shift(1).rolling(window='14D').mean() | |
# The last 6 days, I need the prediction from time t-1 | |
# For now set to nan | |
new_features[col+"_RMean14D"][-6:] = np.nan | |
# Differencing features | |
new_features[col+"_Diff7D"] = (new_features[col].shift(1) - new_features[col].shift(1).shift(7)) | |
new_features[col+"_Diff14D"] = (new_features[col].shift(1) - new_features[col].shift(1).shift(14)) | |
new_features = new_features.drop(columns=col) | |
FEATURES["y_features"].extend([col+"_L1D", col+"_L6D", col+"_L7D", col+"_L8D", col+"_L14D", col+"_RMean14D", col+"_Diff7D", col+"_Diff14D"]) | |
data_preprocess = pd.concat([data_preprocess, new_features], axis=1) | |
assert len(data_preprocess.loc[:, FEATURES["y_features"]].columns) == len(FEATURES["y"])*8 |