eval_results / data_access.py
davidr70's picture
changes to use new table and descriptive runs
312213e
raw
history blame
12.1 kB
import asyncio
import os
from contextlib import asynccontextmanager
from typing import Optional
import asyncpg
import psycopg2
from dotenv import load_dotenv
import pandas as pd
# Global connection pool
load_dotenv()
@asynccontextmanager
async def get_async_connection(schema="talmudexplore"):
"""Get a connection for the current request."""
try:
# Create a single connection without relying on a shared pool
conn = await asyncpg.connect(
database=os.getenv("pg_dbname"),
user=os.getenv("pg_user"),
password=os.getenv("pg_password"),
host=os.getenv("pg_host"),
port=os.getenv("pg_port")
)
await conn.execute(f'SET search_path TO {schema}')
yield conn
finally:
await conn.close()
async def get_questions():
async with get_async_connection() as conn:
questions = await conn.fetch("SELECT id, question_text FROM questions ORDER BY id")
return [{"id": q["id"], "text": q["question_text"]} for q in questions]
async def get_metadata(question_id: int, source_finder_id_run_id: int):
async with get_async_connection() as conn:
metadata = await conn.fetchrow('''
SELECT metadata
FROM source_finder_run_question_metadata sfrqm
WHERE sfrqm.question_id = $1 and sfrqm.source_finder_run_id = $2;
''', question_id, source_finder_id_run_id)
if metadata is None:
return ""
return metadata.get('metadata')
# Get distinct source finders
async def get_source_finders():
async with get_async_connection() as conn:
finders = await conn.fetch("SELECT id, source_finder_type as name FROM source_finders ORDER BY id")
return [{"id": f["id"], "name": f["name"]} for f in finders]
# Get distinct run IDs for a question
async def get_run_ids(question_id: int, source_finder_id: int):
async with get_async_connection() as conn:
query = """
select distinct sfr.description, srs.source_finder_run_id as run_id
from talmudexplore.source_run_results srs
join talmudexplore.source_finder_runs sfr on srs.source_finder_run_id = sfr.id
join talmudexplore.source_finders sf on sfr.source_finder_id = sf.id
where sfr.source_finder_id = $1
and srs.question_id = $2
"""
run_ids = await conn.fetch(query, source_finder_id, question_id)
return {r["description"]:r["run_id"] for r in run_ids}
async def get_baseline_rankers():
async with get_async_connection() as conn:
rankers = await conn.fetch("SELECT id, ranker FROM rankers ORDER BY id")
return [{"id": f["id"], "name": f["ranker"]} for f in rankers]
async def calculate_baseline_vs_source_stats_for_question(baseline_sources , source_runs_sources):
# for a given question_id and source_finder_id and run_id calculate the baseline vs source stats
# e.g. overlap, high ranked overlap, etc.
async with get_async_connection() as conn:
actual_sources_set = {s["id"] for s in source_runs_sources}
baseline_sources_set = {s["id"] for s in baseline_sources}
# Calculate overlap
overlap = actual_sources_set.intersection(baseline_sources_set)
# only_in_1 = actual_sources_set - baseline_sources_set
# only_in_2 = baseline_sources_set - actual_sources_set
# Calculate high-ranked overlap (rank >= 4)
actual_high_ranked = {s["id"] for s in source_runs_sources if int(s["source_rank"]) >= 4}
baseline_high_ranked = {s["id"] for s in baseline_sources if int(s["baseline_rank"]) >= 4}
high_ranked_overlap = actual_high_ranked.intersection(baseline_high_ranked)
results = {
"total_baseline_sources": len(baseline_sources),
"total_found_sources": len(source_runs_sources),
"overlap_count": len(overlap),
"overlap_percentage": round(len(overlap) * 100 / max(len(actual_sources_set), len(baseline_sources_set)),
2) if max(len(actual_sources_set), len(baseline_sources_set)) > 0 else 0,
"num_high_ranked_baseline_sources": len(baseline_high_ranked),
"num_high_ranked_found_sources": len(actual_high_ranked),
"high_ranked_overlap_count": len(high_ranked_overlap),
"high_ranked_overlap_percentage": round(len(high_ranked_overlap) * 100 / max(len(actual_high_ranked), len(baseline_high_ranked)), 2) if max(len(actual_high_ranked), len(baseline_high_ranked)) > 0 else 0
}
#convert results to dataframe
results_df = pd.DataFrame([results])
return results_df
async def calculate_cumulative_statistics_for_all_questions(source_finder_run_id: int, ranker_id: int):
"""
Calculate cumulative statistics across all questions for a specific source finder, run, and ranker.
Args:
source_finder_run_id (int): ID of the source finder and run as appears in source runs
ranker_id (int): ID of the baseline ranker
Returns:
pd.DataFrame: DataFrame containing aggregated statistics
"""
async with get_async_connection() as conn:
# Get all questions
query = "SELECT id FROM questions ORDER BY id"
questions = await conn.fetch(query)
question_ids = [q["id"] for q in questions]
# Initialize aggregates
total_baseline_sources = 0
total_found_sources = 0
total_overlap = 0
total_high_ranked_baseline = 0
total_high_ranked_found = 0
total_high_ranked_overlap = 0
# Process each question
valid_questions = 0
for question_id in question_ids:
try:
# Get unified sources for this question
stats, sources = await get_stats(conn, question_id, ranker_id, source_finder_run_id)
if sources and len(sources) > 0:
valid_questions += 1
stats_dict = stats.iloc[0].to_dict()
# Add to running totals
total_baseline_sources += stats_dict.get('total_baseline_sources', 0)
total_found_sources += stats_dict.get('total_found_sources', 0)
total_overlap += stats_dict.get('overlap_count', 0)
total_high_ranked_baseline += stats_dict.get('num_high_ranked_baseline_sources', 0)
total_high_ranked_found += stats_dict.get('num_high_ranked_found_sources', 0)
total_high_ranked_overlap += stats_dict.get('high_ranked_overlap_count', 0)
except Exception as e:
# Skip questions with errors
continue
# Calculate overall percentages
overlap_percentage = round(total_overlap * 100 / max(total_baseline_sources, total_found_sources), 2) \
if max(total_baseline_sources, total_found_sources) > 0 else 0
high_ranked_overlap_percentage = round(
total_high_ranked_overlap * 100 / max(total_high_ranked_baseline, total_high_ranked_found), 2) \
if max(total_high_ranked_baseline, total_high_ranked_found) > 0 else 0
# Compile results
cumulative_stats = {
"total_questions_analyzed": valid_questions,
"total_baseline_sources": total_baseline_sources,
"total_found_sources": total_found_sources,
"total_overlap_count": total_overlap,
"overall_overlap_percentage": overlap_percentage,
"total_high_ranked_baseline_sources": total_high_ranked_baseline,
"total_high_ranked_found_sources": total_high_ranked_found,
"total_high_ranked_overlap_count": total_high_ranked_overlap,
"overall_high_ranked_overlap_percentage": high_ranked_overlap_percentage,
"avg_baseline_sources_per_question": round(total_baseline_sources / valid_questions,
2) if valid_questions > 0 else 0,
"avg_found_sources_per_question": round(total_found_sources / valid_questions,
2) if valid_questions > 0 else 0
}
return pd.DataFrame([cumulative_stats])
async def get_unified_sources(question_id: int, source_finder_run_id: int, ranker_id: int):
"""
Create unified view of sources from both baseline_sources and source_runs
with indicators of where each source appears and their respective ranks.
"""
async with get_async_connection() as conn:
stats_df, unified_results = await get_stats(conn, question_id, ranker_id, source_finder_run_id)
return unified_results, stats_df
async def get_stats(conn, question_id, ranker_id, source_finder_run_id):
# Get sources from source_runs
query_runs = """
SELECT tb.tractate_chunk_id as id,
sr.rank as source_rank,
sr.tractate,
sr.folio,
sr.reason as source_reason
FROM source_run_results sr
join talmud_bavli tb on sr.sugya_id = tb.xml_id
WHERE sr.question_id = $1
AND sr.source_finder_run_id = $2
"""
source_runs = await conn.fetch(query_runs, question_id, source_finder_run_id)
# Get sources from baseline_sources
query_baseline = """
SELECT tb.tractate_chunk_id as id, bs.rank as baseline_rank, bs.tractate, bs.folio
FROM baseline_sources bs
join talmud_bavli tb on bs.sugya_id = tb.xml_id
WHERE bs.question_id = $1
AND bs.ranker_id = $2
"""
baseline_sources = await conn.fetch(query_baseline, question_id, ranker_id)
stats_df = await calculate_baseline_vs_source_stats_for_question(baseline_sources, source_runs)
# Convert to dictionaries for easier lookup
source_runs_dict = {s["id"]: dict(s) for s in source_runs}
baseline_dict = {s["id"]: dict(s) for s in baseline_sources}
# Get all unique sugya_ids
all_sugya_ids = set(source_runs_dict.keys()) | set(baseline_dict.keys())
# Build unified results
unified_results = []
for sugya_id in all_sugya_ids:
in_source_run = sugya_id in source_runs_dict
in_baseline = sugya_id in baseline_dict
if in_baseline:
info = baseline_dict[sugya_id]
else:
info = source_runs_dict[sugya_id]
result = {
"id": sugya_id,
"tractate": info.get("tractate"),
"folio": info.get("folio"),
"in_baseline": "Yes" if in_baseline else "No",
"baseline_rank": baseline_dict.get(sugya_id, {}).get("baseline_rank", "N/A"),
"in_source_run": "Yes" if in_source_run else "No",
"source_run_rank": source_runs_dict.get(sugya_id, {}).get("source_rank", "N/A"),
"source_reason": source_runs_dict.get(sugya_id, {}).get("reason", "N/A"),
"metadata": source_runs_dict.get(sugya_id, {}).get("metadata", "")
}
unified_results.append(result)
return stats_df, unified_results
async def get_source_text(tractate_chunk_id: int):
"""
Retrieves the text content for a given tractate chunk ID.
"""
async with get_async_connection() as conn:
query = """
SELECT tb.text_with_nikud as text
FROM talmud_bavli tb
WHERE tb.tractate_chunk_id = $1
"""
result = await conn.fetchrow(query, tractate_chunk_id)
return result["text"] if result else "Source text not found"
def get_pg_sync_connection(schema="talmudexplore"):
conn = psycopg2.connect(dbname=os.getenv("pg_dbname"),
user=os.getenv("pg_user"),
password=os.getenv("pg_password"),
host=os.getenv("pg_host"),
port=os.getenv("pg_port"),
options=f"-c search_path={schema}")
return conn