davidr70 commited on
Commit
ccdfaf9
·
1 Parent(s): fdf5cc1

first commti

Browse files
Files changed (3) hide show
  1. .gitignore +2 -0
  2. app.py +45 -0
  3. requirements.txt +1 -0
.gitignore ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ .idea/
2
+ *.iml
app.py ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from datasets import load_dataset
2
+ from ragatouille import RAGPretrainedModel
3
+ import gradio as gr
4
+
5
+ dataset=load_dataset("davidr70/menachot")
6
+ documents = []
7
+ document_ids = []
8
+ metadatas = []
9
+ for row in dataset['train']:
10
+ document_id = row['id']
11
+ if document_id not in document_ids:
12
+ document_ids.append(document_id)
13
+ documents.append(row['content'])
14
+ metadatas.append(row['metadata'])
15
+
16
+ RAG = RAGPretrainedModel.from_pretrained("answerdotai/answerai-colbert-small-v1")
17
+
18
+ index_path = RAG.index(
19
+ index_name="menachot_small_model",
20
+ collection=documents,
21
+ document_ids=document_ids,
22
+ document_metadatas=metadatas
23
+ )
24
+
25
+
26
+ def ask(question):
27
+ results = RAG.search(question)
28
+ full_result = ""
29
+ for result in results:
30
+ output = f"document_id: {result['document_id']}\nscore: {str(result['score'])}\nrank: {str(result['rank'])}\ntext: {result['content']}\n\n\n"
31
+ full_result += output
32
+ return full_result
33
+
34
+
35
+ with gr.Blocks(title="Menachot Search") as demo:
36
+ gr.Markdown("# Menachot Search")
37
+ gr.Markdown("Search through the Menachot dataset using RAG")
38
+
39
+ question = gr.Textbox(label="Question", placeholder="Ask a question about Menachot...")
40
+ submit_btn = gr.Button("Search")
41
+ answer = gr.Textbox(label="Sources", lines=20)
42
+
43
+ submit_btn.click(fn=ask, inputs=question, outputs=answer)
44
+
45
+ demo.launch()
requirements.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ ragatouille