davidr99's picture
Update to use transfomers
af95610
raw
history blame
1.73 kB
from PIL import Image
import spaces
import gradio as gr
MODEL_ID = "davidr99/qwen2-7b-instruct-blackjack"
@spaces.GPU(duration=30)
def blackjack_ai(image):
from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor
from qwen_vl_utils import process_vision_info
model = Qwen2VLForConditionalGeneration.from_pretrained(MODEL_ID, torch_dtype="auto", device_map="auto")
processor = AutoProcessor.from_pretrained(MODEL_ID)
instruction = "extract json from this image."
messages = [
{"role": "user", "content": [
{"type": "image", "image": image},
{"type": "text", "text": instruction}
]}
]
print(messages)
# Preparation for inference
text = processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
)
inputs = inputs.to("cuda")
# Inference: Generation of the output
generated_ids = model.generate(**inputs, max_new_tokens=128)
generated_ids_trimmed = [
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = processor.batch_decode(
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
return output_text
with gr.Blocks() as demo:
image = gr.Image(type="filepath")
submit = gr.Button("Submit")
output = gr.TextArea()
submit.click(blackjack_ai, inputs=[image], outputs=[output])
demo.launch()