davidr99's picture
Update app.py
ae54346 verified
from PIL import Image
import spaces
import gradio as gr
MODEL_ID = "Qwen/Qwen2-VL-7B-Instruct"
MODEL_FINETUNE_ID = "davidr99/qwen2.5-7b-instruct-blackjack"
EXAMPLES = [
"examples/black_jack_screenshot_1737088587.png",
"examples/black_jack_screenshot_1737088629.png",
"examples/black_jack_screenshot_1737088648.png",
"examples/Screenshot 2024-12-06 220410.png"
]
from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor
from qwen_vl_utils import process_vision_info
model = Qwen2VLForConditionalGeneration.from_pretrained(MODEL_ID, torch_dtype="auto").to('cuda')
model.load_adapter(MODEL_FINETUNE_ID)
processor = AutoProcessor.from_pretrained(MODEL_FINETUNE_ID)
@spaces.GPU(duration=30)
def blackjack_ai(image, question):
instruction = question
messages = [
{"role": "system",
"content": [
{"type":"text", "text": "You are a blackjack player. Extract the image into json information."} ]
},
{"role": "user", "content": [
{"type": "image", "image": image},
{"type": "text", "text": instruction}
]}
]
print(messages)
# Preparation for inference
text = processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
)
inputs = inputs.to("cuda")
# Inference: Generation of the output
generated_ids = model.generate(**inputs, max_new_tokens=128)
generated_ids_trimmed = [
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = processor.batch_decode(
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
return output_text
with gr.Blocks() as demo:
image = gr.Image(type="filepath")
question = gr.Textbox(value = "extract json from this image.")
submit = gr.Button("Submit")
output = gr.TextArea()
examples = gr.Examples(examples=EXAMPLES, inputs=[image])
submit.click(blackjack_ai, inputs=[image, question], outputs=[output])
demo.launch()