hgbdt-viz / streamlit_viz.py
none
Add some text
ffd3002
raw
history blame
9.73 kB
import joblib
import time
import plotly.graph_objects as go
import streamlit as st
import pandas as pd
import numpy as np
FEATS = [
'srcip',
'sport',
'dstip',
'dsport',
'proto',
#'state', I dropped this one when I trained the model
'dur',
'sbytes',
'dbytes',
'sttl',
'dttl',
'sloss',
'dloss',
'service',
'Sload',
'Dload',
'Spkts',
'Dpkts',
'swin',
'dwin',
'stcpb',
'dtcpb',
'smeansz',
'dmeansz',
'trans_depth',
'res_bdy_len',
'Sjit',
'Djit',
'Stime',
'Ltime',
'Sintpkt',
'Dintpkt',
'tcprtt',
'synack',
'ackdat',
'is_sm_ips_ports',
'ct_state_ttl',
'ct_flw_http_mthd',
'is_ftp_login',
'ct_ftp_cmd',
'ct_srv_src',
'ct_srv_dst',
'ct_dst_ltm',
'ct_src_ltm',
'ct_src_dport_ltm',
'ct_dst_sport_ltm',
'ct_dst_src_ltm',
]
# Generated from
# mokole.com/palette.html
COLORS = [
'#808080',
'#2f4f4f',
'#556b2f',
'#8b4513',
'#6b8e23',
'#2e8b57',
'#800000',
'#191970',
'#006400',
'#b8860b',
'#4682b4',
'#d2691e',
'#9acd32',
'#20b2aa',
'#cd5c5c',
'#00008b',
'#32cd32',
'#8fbc8f',
'#800080',
'#b03060',
'#d2b48c',
'#ff4500',
'#ffa500',
'#ffff00',
'#c71585',
'#0000cd',
'#00ff00',
'#00ff7f',
'#dc143c',
'#00ffff',
'#00bfff',
'#f4a460',
'#9370db',
'#a020f0',
'#adff2f',
'#ff6347',
'#da70d6',
'#b0c4de',
'#ff00ff',
'#f0e68c',
'#6495ed',
'#dda0dd',
'#afeeee',
'#98fb98',
'#7fffd4',
'#ffb6c1',
]
#COLORS = [
# 'aliceblue','aqua','aquamarine','azure',
# 'bisque','black','blanchedalmond','blue',
# 'blueviolet','brown','burlywood','cadetblue',
# 'chartreuse','chocolate','coral','cornflowerblue',
# 'cornsilk','crimson','cyan','darkblue','darkcyan',
# 'darkgoldenrod','darkgray','darkgreen',
# 'darkkhaki','darkmagenta','darkolivegreen','darkorange',
# 'darkorchid','darkred','darksalmon','darkseagreen',
# 'darkslateblue','darkslategray',
# 'darkturquoise','darkviolet','deeppink','deepskyblue',
# 'dimgray','dodgerblue',
# 'forestgreen','fuchsia','gainsboro',
# 'gold','goldenrod','gray','green',
# 'greenyellow','honeydew','hotpink','indianred','indigo',
# 'ivory','khaki','lavender','lavenderblush','lawngreen',
# 'lemonchiffon','lightblue','lightcoral','lightcyan',
# 'lightgoldenrodyellow','lightgray',
# 'lightgreen','lightpink','lightsalmon','lightseagreen',
# 'lightskyblue','lightslategray',
# 'lightsteelblue','lightyellow','lime','limegreen',
# 'linen','magenta','maroon','mediumaquamarine',
# 'mediumblue','mediumorchid','mediumpurple',
# 'mediumseagreen','mediumslateblue','mediumspringgreen',
# 'mediumturquoise','mediumvioletred','midnightblue',
# 'mintcream','mistyrose','moccasin','navy',
# 'oldlace','olive','olivedrab','orange','orangered',
# 'orchid','palegoldenrod','palegreen','paleturquoise',
# 'palevioletred','papayawhip','peachpuff','peru','pink',
# 'plum','powderblue','purple','red','rosybrown',
# 'royalblue','saddlebrown','salmon','sandybrown',
# 'seagreen','seashell','sienna','silver','skyblue',
# 'slateblue','slategray','slategrey','snow','springgreen',
# 'steelblue','tan','teal','thistle','tomato','turquoise',
# 'violet','wheat','yellow','yellowgreen'
#]
def build_parents(tree, visit_order, node_id2plot_id):
parents = [None]
parent_plot_ids = [None]
directions = [None]
for i in visit_order[1:]:
parent = tree[tree['right']==i].index
if parent.empty:
p = tree[tree['left']==i].index[0]
parent_plot_ids.append(str(node_id2plot_id[p]))
parents.append(p)
directions.append('l')
else:
parent_plot_ids.append(str(node_id2plot_id[parent[0]]))
parents.append(parent[0])
directions.append('r')
return parents, parent_plot_ids, directions
def build_labels_colors(tree, visit_order, parents, parent_plot_ids, directions):
labels = ['Histogram Gradient-Boosted Decision Tree']
colors = ['white']
for i, parent, parent_plot_id, direction in zip(
visit_order,
parents,
parent_plot_ids,
directions
):
# skip the first one (the root)
if i == 0:
continue
node = tree.loc[i]
feat = FEATS[int(tree.loc[int(parent), 'feature_idx'])]
thresh = tree.loc[int(parent), 'num_threshold']
if direction == 'l':
labels.append(f"[{parent_plot_id}.L] {feat} <= {thresh}")
else:
labels.append(f"[{parent_plot_id}.R] {feat} > {thresh}")
# colors
offset = FEATS.index(feat)
colors.append(COLORS[offset])
return labels, colors
def build_plot(tree):
#https://stackoverflow.com/questions/64393535/python-plotly-treemap-ids-format-and-how-to-display-multiple-duplicated-labels-i
# if you use `ids`, then `parents` has to be in terms of `ids`
visit_order = breadth_first_traverse(tree)
node_id2plot_id = {node:i for i, node in enumerate(visit_order)}
parents, parent_plot_ids, directions = build_parents(tree, visit_order, node_id2plot_id)
labels, colors = build_labels_colors(tree, visit_order, parents, parent_plot_ids, directions)
# this should just be ['0', '1', '2', . . .]
plot_ids = [str(node_id2plot_id[x]) for x in visit_order]
return go.Treemap(
values=tree['count'].to_numpy(),
labels=labels,
ids=plot_ids,
parents=parent_plot_ids,
marker_colors=colors,
)
def breadth_first_traverse(tree):
"""
https://www.101computing.net/breadth-first-traversal-of-a-binary-tree/
Iterative version makes more sense since I have the whole tree in a table
instead of just nodes and pointers
"""
q = [0]
visited_nodes = []
while len(q) != 0:
cur = q.pop(0)
visited_nodes.append(cur)
if tree.loc[cur, 'left'] != 0:
q.append(tree.loc[cur, 'left'])
if tree.loc[cur, 'right'] != 0:
q.append(tree.loc[cur, 'right'])
return visited_nodes
def main():
# load the data
hgb = joblib.load('hgb_classifier.joblib')
trees = [pd.DataFrame(x[0].nodes) for x in hgb._predictors]
# make the plots
graph_objs = [build_plot(tree) for tree in trees]
figures = [go.Figure(graph_obj) for graph_obj in graph_objs]
frames = [go.Frame(data=graph_obj) for graph_obj in graph_objs]
# show them with streamlit
st.markdown("""
I trained a
[Histogram-based Gradient Boosting Classification Tree](https://scikit-learn.org/stable/modules/ensemble.html#histogram-based-gradient-boosting)
on some data.
That algoritm looks at its mistakes and tries to avoid those mistakes the next time around.
To do that, it starts off with a decision tree.
From there, it looks at the points that tree got wrong and makes another decision tree that tries
to get those points right.
Then it looks at that second tree's mistakes and makes another tree that tries to fix those mistakes.
And so on.
My model ends up with 10 trees.
I've plotted the progression of those trees as an animated series of tree maps.
The boxes are color-coded by which feature the decision tree is using to make that split and I've labeled each one with the exact decision boundary of that split.
It takes a second to get going after you hit "Play."
I recommend expanding the plot by clicking the arrows in the top right corner since Streamlit makes the plot really small.
""")
st.markdown('## My Trees')
# Maybe just show a Plotly animated chart
# https://plotly.com/python/animations/#using-a-slider-and-buttons
# They don't really document the animation stuff on their website
# but it's in here
# https://raw.githubusercontent.com/plotly/plotly.js/master/dist/plot-schema.json
# I guess it's only in the JS docs and hasn't made it to the Python docs yet
# https://plotly.com/javascript/animations/
# trying to find stuff here instead
# https://plotly.com/python-api-reference/generated/plotly.graph_objects.layout.updatemenu.html?highlight=updatemenu
# this one finally set the speed
# no mention of how they figured this out but thank goodness I found it
# https://towardsdatascience.com/basic-animation-with-matplotlib-and-plotly-5eef4ad6c5aa
# this also has custom animation speeds in it
# https://plotly.com/python/custom-buttons/#reference
ani_fig = go.Figure(
data=graph_objs[0],
frames=frames,
layout=go.Layout(
updatemenus=[{
'type':'buttons',
# https://plotly.com/python/reference/layout/updatemenus/
# Always show the background color on buttons
# streamlit breaks the background color of the active button in darkmode
'showactive': False,
# background color of the buttons
'bgcolor': '#fff',
# font in the buttons
'font': {'color': '#000'},
# border color of the buttons
'bordercolor': '#000',
# Play button
'buttons':[{
'label':'Play',
'method': 'animate',
'args':[None, {
'frame': {'duration':5000},
'transition': {'duration': 2500},
}],
}
]
}]
)
)
st.plotly_chart(ani_fig)
st.markdown("""
This actually turned out to be a lot harder than I thought it would be.
""")
st.markdown('# Check out each tree!')
# This works the way I want
# but the plot is tiny
# also it recalcualtes all of the plots
# every time the slider value changes
#
# I tried to cache the plots but build_plot() takes
# a DataFrame which is mutable and therefore unhashable I guess
# so it won't let me cache that function
# I could pack the dataframe bytes to smuggle them past that check
# but whatever
idx = st.slider(
label='Which tree do you want to see?',
min_value=0,
max_value=len(figures)-1,
value=0,
step=1
)
st.plotly_chart(figures[idx])
st.markdown(f'## Tree {idx}')
st.dataframe(trees[idx])
if __name__=='__main__':
main()