File size: 2,068 Bytes
313b838
 
 
5b94e9b
be6d20e
 
 
 
313b838
be6d20e
 
5b94e9b
be6d20e
 
 
5b94e9b
be6d20e
 
5b94e9b
 
 
be6d20e
 
5b94e9b
be6d20e
 
 
 
 
 
 
 
 
313b838
be6d20e
 
 
 
 
 
 
 
 
 
 
313b838
5b94e9b
313b838
 
 
be6d20e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
313b838
 
 
 
 
be6d20e
313b838
5b94e9b
313b838
 
 
be6d20e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
import gradio as gr
from huggingface_hub import InferenceClient

# Initialize the client
client = InferenceClient(
    model="davnas/Italian_Cousine_2.1",
    headers={"Content-Type": "application/json"}
)

def respond(message, history, system_message, max_tokens, temperature, top_p):
    # Format the prompt including history and system message
    prompt = ""
    
    # Add system message if provided
    if system_message:
        prompt += f"{system_message}\n"
    
    # Add conversation history
    for msg in history:
        if isinstance(msg, list) and len(msg) == 2:
            prompt += f"User: {msg[0]}\nAssistant: {msg[1]}\n"
    
    # Add current message
    prompt += f"User: {message}\nAssistant:"
    
    # Prepare parameters for text generation
    parameters = {
        "max_new_tokens": max_tokens,
        "temperature": temperature,
        "top_p": top_p,
        "return_full_text": False
    }
    
    response = ""
    try:
        # Use generate_text with proper parameters
        for token in client.text_generation(
            prompt,
            stream=True,
            **parameters
        ):
            response += token
            yield response
    except Exception as e:
        yield f"Error: {str(e)}"

# Create the interface
demo = gr.ChatInterface(
    respond,
    additional_inputs=[
        gr.Textbox(
            value="You are a helpful assistant knowledgeable about Italian cuisine.",
            label="System message"
        ),
        gr.Slider(
            minimum=1,
            maximum=2048,
            value=512,
            step=1,
            label="Max new tokens"
        ),
        gr.Slider(
            minimum=0.1,
            maximum=4.0,
            value=0.7,
            step=0.1,
            label="Temperature"
        ),
        gr.Slider(
            minimum=0.1,
            maximum=1.0,
            value=0.95,
            step=0.05,
            label="Top-p (nucleus sampling)"
        ),
    ]
)

if __name__ == "__main__":
    demo.launch(server_name="0.0.0.0", server_port=7860)