import gradio as gr from huggingface_hub import InferenceClient # Initialize the client client = InferenceClient( model="davnas/Italian_Cousine_2.1", headers={"Content-Type": "application/json"} ) def respond(message, history, system_message, max_tokens, temperature, top_p): # Format the prompt including history and system message prompt = "" # Add system message if provided if system_message: prompt += f"{system_message}\n" # Add conversation history for msg in history: if isinstance(msg, list) and len(msg) == 2: prompt += f"User: {msg[0]}\nAssistant: {msg[1]}\n" # Add current message prompt += f"User: {message}\nAssistant:" # Prepare parameters for text generation parameters = { "max_new_tokens": max_tokens, "temperature": temperature, "top_p": top_p, "return_full_text": False } response = "" try: # Use generate_text with proper parameters for token in client.text_generation( prompt, stream=True, **parameters ): response += token yield response except Exception as e: yield f"Error: {str(e)}" # Create the interface demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox( value="You are a helpful assistant knowledgeable about Italian cuisine.", label="System message" ), gr.Slider( minimum=1, maximum=2048, value=512, step=1, label="Max new tokens" ), gr.Slider( minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature" ), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)" ), ] ) if __name__ == "__main__": demo.launch(server_name="0.0.0.0", server_port=7860)