File size: 5,101 Bytes
ae11e16 a756789 ae11e16 449d5f0 ae11e16 9986d5d ae11e16 bc264b9 ae11e16 bc264b9 ae11e16 8364d93 ae11e16 449d5f0 34e93e0 ae11e16 449d5f0 e828884 ae11e16 b9d24e7 ae11e16 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 |
import os
from typing import List
import gradio as gr
import numpy as np
import torch
import torch.nn.functional as F
from model import DavidPageNet
from PIL import Image
from pytorch_grad_cam import GradCAM
from pytorch_grad_cam.utils.image import show_cam_on_image
from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget
from torchvision import transforms
# imagenet mean and std
mean = [0.485, 0.456, 0.406]
std = [0.229, 0.224, 0.225]
inv_mean = [-mean / std for mean, std in zip(mean, std)]
inv_std = [1 / s for s in std]
# transforms
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=mean, std=std),
]
)
inv_normalize = transforms.Normalize(mean=inv_mean, std=inv_std)
classes = [
'airplane',
'automobile',
'bird',
'cat',
'deer',
'dog',
'frog',
'horse',
'ship',
'truck'
]
class Gradio:
def __init__(self, model_path: str):
use_cuda = torch.cuda.is_available()
self.device = torch.device("cuda" if use_cuda else "cpu")
self.model = self.load_model(model_path)
self.temperature = 2
def load_model(self, model_path: str):
model = DavidPageNet().to(self.device)
if os.path.isfile(model_path):
model.load_state_dict(
torch.load(model_path, map_location=self.device), strict=False
)
return model
def cam(
self,
input_tensor: torch.Tensor,
target_class_id: int,
layer_nums: List,
transparency: float = 0.7,
):
targets = [ClassifierOutputTarget(target_class_id)]
target_layers = [getattr(self.model, f"block{layer-1}") for layer in layer_nums]
with GradCAM(
model=self.model,
target_layers=target_layers,
use_cuda=self.device == torch.device("cuda"),
) as cam:
grayscale_cam = cam(input_tensor=input_tensor, targets=targets)
grayscale_cam = grayscale_cam[0, :]
img = inv_normalize(input_tensor)
rgb_img = img[0].permute(1, 2, 0).cpu().numpy()
visualization = show_cam_on_image(
rgb_img, grayscale_cam, use_rgb=True, image_weight=transparency
)
return visualization
def inference(
self,
input_img: np.array,
transparency: float=0.7,
ntop_classes: int=2,
layer_nums: List=[3, 4],
cam_for_class: str="default",
):
self.model.eval()
input_img = transform(input_img)
input_img = input_img.to(self.device)
input_img = input_img.unsqueeze(0)
with torch.no_grad():
outputs = self.model(input_img).squeeze(0)
outputs = F.softmax(outputs / self.temperature, dim=-1)
probability, prediction = torch.sort(outputs, descending=True)
prediction = list(zip(prediction.tolist(), probability.tolist()))
class_id = (
prediction[0][0]
if cam_for_class in ["default", ""]
else classes.index(cam_for_class)
)
visualization = self.cam(
input_tensor=input_img,
target_class_id=class_id,
layer_nums=layer_nums,
transparency=transparency,
)
top_nclass_result = [
(classes[class_id], round(score, 2))
for class_id, score in prediction[:ntop_classes]
]
return visualization, dict(top_nclass_result)
method = Gradio(model_path="./checkpoint/model.pt")
demo = gr.Interface(
fn=method.inference,
inputs=[
gr.Image(shape=(32, 32), label="Input Image", value="./samples/dog_cat.jpeg"),
gr.Slider(
minimum=0,
maximum=1,
value=0.5,
label="Transparency",
info="Transparency of the CAM-Attention Output",
),
gr.Slider(
minimum=1,
maximum=10,
step=1,
value=2,
label="Top Classes",
info="Number of Top Predicted Classes",
),
gr.CheckboxGroup(
choices=[1, 2, 3, 4],
value=[3, 4],
label="Network Layers",
info="Network Layers for CAM-Attention Extraction",
),
gr.Dropdown(
choices=["default"] + classes,
multiselect=False,
value="default",
label="Class Activation Map (CAM) Focus Visualization",
info="This section showcases the specific region of interest within the input image that the Class Activation Map (CAM) algorithm emphasizes to make predictions based on the selected class from the dropdown menu. The 'default' value serves as the default choice, representing the top class predicted by the model.",
),
],
outputs=[
gr.Image(shape=(32, 32), label="CAM Output for the Chosen Class").style(width=256, height=256),
gr.Label(label="Top Classes"),
],
examples=[[os.path.join("./samples/", f)] for f in os.listdir("./samples/")]
)
demo.launch() |