File size: 19,236 Bytes
1df36a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
import torch
import copy
import random
import numpy as np


# Diffusion util
# ------------------------------------------------------------------------
def encode_prompt(prompt_batch, text_encoders, tokenizers, proportion_empty_prompts, is_train=True):
    prompt_embeds_list = []

    captions = []
    for caption in prompt_batch:
        if random.random() < proportion_empty_prompts:
            captions.append("")
        elif isinstance(caption, str):
            captions.append(caption)
        elif isinstance(caption, (list, np.ndarray)):
            # take a random caption if there are multiple
            captions.append(random.choice(caption) if is_train else caption[0])

    with torch.no_grad():
        for tokenizer, text_encoder in zip(tokenizers, text_encoders):
            text_inputs = tokenizer(
                captions,
                padding="max_length",
                max_length=tokenizer.model_max_length,
                truncation=True,
                return_tensors="pt",
            )
            text_input_ids = text_inputs.input_ids
            prompt_embeds = text_encoder(
                text_input_ids.to(text_encoder.device),
                output_hidden_states=True,
            )

            # We are only ALWAYS interested in the pooled output of the final text encoder
            pooled_prompt_embeds = prompt_embeds[0]
            prompt_embeds = prompt_embeds.hidden_states[-2]
            bs_embed, seq_len, _ = prompt_embeds.shape
            prompt_embeds = prompt_embeds.view(bs_embed, seq_len, -1)
            prompt_embeds_list.append(prompt_embeds)

    prompt_embeds = torch.concat(prompt_embeds_list, dim=-1)
    pooled_prompt_embeds = pooled_prompt_embeds.view(bs_embed, -1)
    return prompt_embeds, pooled_prompt_embeds


def compute_embeddings(
    prompt_batch, original_sizes, crop_coords, proportion_empty_prompts, text_encoders, tokenizers, is_train=True,
    device='cuda'
):
    target_size = (1024, 1024)
    original_sizes = original_sizes #list(map(list, zip(*original_sizes)))
    crops_coords_top_left = crop_coords #list(map(list, zip(*crop_coords)))

    original_sizes = torch.tensor(original_sizes, dtype=torch.long)
    crops_coords_top_left = torch.tensor(crops_coords_top_left, dtype=torch.long)

    prompt_embeds, pooled_prompt_embeds = encode_prompt(
        prompt_batch, text_encoders, tokenizers, proportion_empty_prompts, is_train
    )
    add_text_embeds = pooled_prompt_embeds

    # Adapted from pipeline.StableDiffusionXLPipeline._get_add_time_ids
    add_time_ids = list(target_size)
    add_time_ids = torch.tensor([add_time_ids])
    add_time_ids = add_time_ids.repeat(len(prompt_batch), 1)
    add_time_ids = torch.cat([original_sizes, crops_coords_top_left, add_time_ids], dim=-1)
    add_time_ids = add_time_ids.to(device, dtype=prompt_embeds.dtype)

    prompt_embeds = prompt_embeds.to(device)
    add_text_embeds = add_text_embeds.to(device)
    unet_added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}

    return {"prompt_embeds": prompt_embeds, **unet_added_cond_kwargs}

def extract_into_tensor(a, t, x_shape):
    b, *_ = t.shape
    out = a.gather(-1, t)
    return out.reshape(b, *((1,) * (len(x_shape) - 1)))


def guidance_scale_embedding(w, embedding_dim=512, dtype=torch.float32):
    """
    See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298

    Args:
        timesteps (`torch.Tensor`):
            generate embedding vectors at these timesteps
        embedding_dim (`int`, *optional*, defaults to 512):
            dimension of the embeddings to generate
        dtype:
            data type of the generated embeddings

    Returns:
        `torch.FloatTensor`: Embedding vectors with shape `(len(timesteps), embedding_dim)`
    """
    assert len(w.shape) == 1
    w = w * 1000.0

    half_dim = embedding_dim // 2
    emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1)
    emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb)
    emb = w.to(dtype)[:, None] * emb[None, :]
    emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
    if embedding_dim % 2 == 1:  # zero pad
        emb = torch.nn.functional.pad(emb, (0, 1))
    assert emb.shape == (w.shape[0], embedding_dim)
    return emb

def predicted_origin(model_output, timesteps, boundary_timesteps, sample, prediction_type, alphas, sigmas):
    sigmas_s = extract_into_tensor(sigmas, boundary_timesteps, sample.shape)
    alphas_s = extract_into_tensor(alphas, boundary_timesteps, sample.shape)

    sigmas = extract_into_tensor(sigmas, timesteps, sample.shape)
    alphas = extract_into_tensor(alphas, timesteps, sample.shape)

    # Set hard boundaries to ensure equivalence with forward (direct) CD
    alphas_s[boundary_timesteps == 0] = 1.0
    sigmas_s[boundary_timesteps == 0] = 0.0

    if prediction_type == "epsilon":
        pred_x_0 = (sample - sigmas * model_output) / alphas # x0 prediction
        pred_x_0 = alphas_s * pred_x_0 + sigmas_s * model_output # Euler step to the boundary step
    elif prediction_type == "v_prediction":
        assert boundary_timesteps == 0, "v_prediction does not support multiple endpoints at the moment"
        pred_x_0 = alphas * sample - sigmas * model_output
    else:
        raise ValueError(f"Prediction type {prediction_type} currently not supported.")

    return pred_x_0


class DDIMSolver:
    def __init__(
            self, alpha_cumprods, timesteps=1000, ddim_timesteps=50,
            num_endpoints=1, num_inverse_endpoints=1,
            max_inverse_timestep_index=49,
            endpoints=None, inverse_endpoints=None
    ):
        # DDIM sampling parameters
        step_ratio = timesteps // ddim_timesteps
        self.ddim_timesteps = (np.arange(1, ddim_timesteps + 1) * step_ratio).round().astype(
            np.int64) - 1  # [19, ..., 999]
        self.ddim_alpha_cumprods = alpha_cumprods[self.ddim_timesteps]
        self.ddim_alpha_cumprods_prev = np.asarray(
            [alpha_cumprods[0]] + alpha_cumprods[self.ddim_timesteps[:-1]].tolist()
        )
        self.ddim_alpha_cumprods_next = np.asarray(
            alpha_cumprods[self.ddim_timesteps[1:]].tolist() + [0.0]
        )
        # convert to torch tensors
        self.ddim_timesteps = torch.from_numpy(self.ddim_timesteps).long()
        self.ddim_alpha_cumprods = torch.from_numpy(self.ddim_alpha_cumprods)
        self.ddim_alpha_cumprods_prev = torch.from_numpy(self.ddim_alpha_cumprods_prev)
        self.ddim_alpha_cumprods_next = torch.from_numpy(self.ddim_alpha_cumprods_next)

        # Set endpoints for direct CTM
        if endpoints is None:
            timestep_interval = ddim_timesteps // num_endpoints + int(ddim_timesteps % num_endpoints > 0)
            endpoint_idxs = torch.arange(timestep_interval, ddim_timesteps, timestep_interval) - 1
            self.endpoints = torch.tensor([0] + self.ddim_timesteps[endpoint_idxs].tolist())
        else:
            self.endpoints = torch.tensor([int(endpoint) for endpoint in endpoints.split(',')])
            assert len(self.endpoints) == num_endpoints

        # Set endpoints for inverse CTM
        if inverse_endpoints is None:
            timestep_interval = ddim_timesteps // num_inverse_endpoints + int(
                ddim_timesteps % num_inverse_endpoints > 0)
            inverse_endpoint_idxs = torch.arange(timestep_interval, ddim_timesteps, timestep_interval) - 1
            inverse_endpoint_idxs = torch.tensor(inverse_endpoint_idxs.tolist() + [max_inverse_timestep_index])
            self.inverse_endpoints = self.ddim_timesteps[inverse_endpoint_idxs]
        else:
            self.inverse_endpoints = torch.tensor([int(endpoint) for endpoint in inverse_endpoints.split(',')])
            assert len(self.inverse_endpoints) == num_inverse_endpoints

    def to(self, device):
        self.endpoints = self.endpoints.to(device)
        self.inverse_endpoints = self.inverse_endpoints.to(device)

        self.ddim_timesteps = self.ddim_timesteps.to(device)
        self.ddim_alpha_cumprods = self.ddim_alpha_cumprods.to(device)
        self.ddim_alpha_cumprods_prev = self.ddim_alpha_cumprods_prev.to(device)
        self.ddim_alpha_cumprods_next = self.ddim_alpha_cumprods_next.to(device)
        return self

    def ddim_step(self, pred_x0, pred_noise, timestep_index):
        alpha_cumprod_prev = extract_into_tensor(self.ddim_alpha_cumprods_prev, timestep_index, pred_x0.shape)
        dir_xt = (1.0 - alpha_cumprod_prev).sqrt() * pred_noise
        x_prev = alpha_cumprod_prev.sqrt() * pred_x0 + dir_xt
        return x_prev

    def inverse_ddim_step(self, pred_x0, pred_noise, timestep_index):
        alpha_cumprod_next = extract_into_tensor(self.ddim_alpha_cumprods_next, timestep_index, pred_x0.shape)
        dir_xt = (1.0 - alpha_cumprod_next).sqrt() * pred_noise
        x_next = alpha_cumprod_next.sqrt() * pred_x0 + dir_xt
        return x_next
# ------------------------------------------------------------------------

# Distillation specific
# ------------------------------------------------------------------------
def inverse_sample_deterministic(
        pipe,
        images,
        prompt,
        generator=None,
        num_scales=50,
        num_inference_steps=1,
        timesteps=None,
        start_timestep=19,
        max_inverse_timestep_index=49,
        return_start_latent=False,
        guidance_scale=None,  # Used only if the student has w_embedding
        compute_embeddings_fn=None,
        is_sdxl=False,
        inverse_endpoints=None,
        seed=0,
):
    # assert isinstance(pipe, StableDiffusionImg2ImgPipeline), f"Does not support the pipeline {type(pipe)}"

    if prompt is not None and isinstance(prompt, str):
        batch_size = 1
    elif prompt is not None and isinstance(prompt, list):
        batch_size = len(prompt)

    device = pipe._execution_device

    # Prepare text embeddings
    if compute_embeddings_fn is not None:
        if is_sdxl:
            orig_size = [(1024, 1024)] * len(prompt)
            crop_coords = [(0, 0)] * len(prompt)
            encoded_text = compute_embeddings_fn(prompt, orig_size, crop_coords)
            prompt_embeds = encoded_text.pop("prompt_embeds")
        else:
            prompt_embeds = compute_embeddings_fn(prompt)["prompt_embeds"]
            encoded_text = {}
        prompt_embeds = prompt_embeds.to(pipe.unet.dtype)
    else:
        prompt_embeds = pipe.encode_prompt(prompt, device, 1, False)[0]
        encoded_text = {}
    assert prompt_embeds.dtype == pipe.unet.dtype

    # Prepare the DDIM solver
    endpoints = ','.join(['0'] + inverse_endpoints.split(',')[:-1]) if inverse_endpoints is not None else None
    solver = DDIMSolver(
        pipe.scheduler.alphas_cumprod.cpu().numpy(),
        timesteps=pipe.scheduler.num_train_timesteps,
        ddim_timesteps=num_scales,
        num_endpoints=num_inference_steps,
        num_inverse_endpoints=num_inference_steps,
        max_inverse_timestep_index=max_inverse_timestep_index,
        endpoints=endpoints,
        inverse_endpoints=inverse_endpoints
    ).to(device)

    if timesteps is None:
        timesteps = solver.inverse_endpoints.flip(0)
        boundary_timesteps = solver.endpoints.flip(0)
    else:
        timesteps, boundary_timesteps = timesteps, timesteps
        boundary_timesteps = boundary_timesteps[1:] + [boundary_timesteps[0]]
        boundary_timesteps[-1] = 999
        timesteps, boundary_timesteps = torch.tensor(timesteps), torch.tensor(boundary_timesteps)

    alpha_schedule = torch.sqrt(pipe.scheduler.alphas_cumprod).to(device)
    sigma_schedule = torch.sqrt(1 - pipe.scheduler.alphas_cumprod).to(device)

    # 5. Prepare latent variables
    num_channels_latents = pipe.unet.config.in_channels
    start_latents = pipe.prepare_latents(
        images, timesteps[0], batch_size, 1, prompt_embeds.dtype, device,
        generator=torch.Generator().manual_seed(seed),
    )
    latents = start_latents.clone()

    if guidance_scale is not None:
        w = torch.ones(batch_size) * guidance_scale
        w_embedding = guidance_scale_embedding(w, embedding_dim=512)
        w_embedding = w_embedding.to(device=latents.device, dtype=latents.dtype)
    else:
        w_embedding = None

    for i, (t, s) in enumerate(zip(timesteps, boundary_timesteps)):
        # predict the noise residual
        noise_pred = pipe.unet(
            latents.to(prompt_embeds.dtype),
            t,
            encoder_hidden_states=prompt_embeds,
            return_dict=False,
            timestep_cond=w_embedding,
            added_cond_kwargs=encoded_text,
        )[0]

        latents = predicted_origin(
            noise_pred,
            torch.tensor([t] * len(latents), device=device),
            torch.tensor([s] * len(latents), device=device),
            latents,
            pipe.scheduler.config.prediction_type,
            alpha_schedule,
            sigma_schedule,
        ).to(prompt_embeds.dtype)

    if return_start_latent:
        return latents, start_latents
    else:
        return latents


def linear_schedule_old(t, guidance_scale, tau1, tau2):
    t = t / 1000
    if t <= tau1:
        gamma = 1.0
    elif t >= tau2:
        gamma = 0.0
    else:
        gamma = (tau2 - t) / (tau2 - tau1)
    return gamma * guidance_scale


@torch.no_grad()
def sample_deterministic(
        pipe,
        prompt,
        latents=None,
        generator=None,
        num_scales=50,
        num_inference_steps=1,
        timesteps=None,
        start_timestep=19,
        max_inverse_timestep_index=49,
        return_latent=False,
        guidance_scale=None,  # Used only if the student has w_embedding
        compute_embeddings_fn=None,
        is_sdxl=False,
        endpoints=None,
        use_dynamic_guidance=False,
        tau1=0.7,
        tau2=0.7,
        amplify_prompt=None,
):
    # assert isinstance(pipe, StableDiffusionPipeline), f"Does not support the pipeline {type(pipe)}"
    height = pipe.unet.config.sample_size * pipe.vae_scale_factor
    width = pipe.unet.config.sample_size * pipe.vae_scale_factor

    # 1. Define call parameters
    if prompt is not None and isinstance(prompt, str):
        batch_size = 1
    elif prompt is not None and isinstance(prompt, list):
        batch_size = len(prompt)

    device = pipe._execution_device

    # Prepare text embeddings
    if compute_embeddings_fn is not None:
        if is_sdxl:
            orig_size = [(1024, 1024)] * len(prompt)
            crop_coords = [(0, 0)] * len(prompt)
            encoded_text = compute_embeddings_fn(prompt, orig_size, crop_coords)
            prompt_embeds = encoded_text.pop("prompt_embeds")
            if amplify_prompt is not None:
                orig_size = [(1024, 1024)] * len(amplify_prompt)
                crop_coords = [(0, 0)] * len(amplify_prompt)
                encoded_text_old = compute_embeddings_fn(amplify_prompt, orig_size, crop_coords)
                amplify_prompt_embeds = encoded_text_old.pop("prompt_embeds")
        else:
            prompt_embeds = compute_embeddings_fn(prompt)["prompt_embeds"]
            encoded_text = {}
        prompt_embeds = prompt_embeds.to(pipe.unet.dtype)
    else:
        prompt_embeds = pipe.encode_prompt(prompt, device, 1, False)[0]
        encoded_text = {}
    assert prompt_embeds.dtype == pipe.unet.dtype

    # Prepare the DDIM solver
    inverse_endpoints = ','.join(endpoints.split(',')[1:] + ['999']) if endpoints is not None else None
    solver = DDIMSolver(
        pipe.scheduler.alphas_cumprod.numpy(),
        timesteps=pipe.scheduler.num_train_timesteps,
        ddim_timesteps=num_scales,
        num_endpoints=num_inference_steps,
        num_inverse_endpoints=num_inference_steps,
        max_inverse_timestep_index=max_inverse_timestep_index,
        endpoints=endpoints,
        inverse_endpoints=inverse_endpoints
    ).to(device)

    prompt_embeds_init = copy.deepcopy(prompt_embeds)

    if timesteps is None:
        timesteps = solver.inverse_endpoints.flip(0)
        boundary_timesteps = solver.endpoints.flip(0)
    else:
        timesteps, boundary_timesteps = copy.deepcopy(timesteps), copy.deepcopy(timesteps)
        timesteps.reverse()
        boundary_timesteps.reverse()
        boundary_timesteps = boundary_timesteps[1:] + [boundary_timesteps[0]]
        boundary_timesteps[-1] = 0
        timesteps, boundary_timesteps = torch.tensor(timesteps), torch.tensor(boundary_timesteps)

    alpha_schedule = torch.sqrt(pipe.scheduler.alphas_cumprod).to(device)
    sigma_schedule = torch.sqrt(1 - pipe.scheduler.alphas_cumprod).to(device)

    # 5. Prepare latent variables
    if latents is None:
        num_channels_latents = pipe.unet.config.in_channels
        latents = pipe.prepare_latents(
            batch_size,
            num_channels_latents,
            height,
            width,
            prompt_embeds.dtype,
            device,
            generator,
            None,
        )
        assert latents.dtype == pipe.unet.dtype
    else:
        latents = latents.to(prompt_embeds.dtype)

    if guidance_scale is not None:
        w = torch.ones(batch_size) * guidance_scale
        w_embedding = guidance_scale_embedding(w, embedding_dim=512)
        w_embedding = w_embedding.to(device=latents.device, dtype=latents.dtype)
    else:
        w_embedding = None

    for i, (t, s) in enumerate(zip(timesteps, boundary_timesteps)):
        if use_dynamic_guidance:
            if not isinstance(t, int):
                t_item = t.item()
            if t_item > tau1 * 1000 and amplify_prompt is not None:
                prompt_embeds = amplify_prompt_embeds
            else:
                prompt_embeds = prompt_embeds_init
            guidance_scale = linear_schedule_old(t_item, w, tau1=tau1, tau2=tau2)
            guidance_scale_tensor = torch.tensor([guidance_scale] * len(latents))
            w_embedding = guidance_scale_embedding(guidance_scale_tensor, embedding_dim=512)
            w_embedding = w_embedding.to(device=latents.device, dtype=latents.dtype)

        # predict the noise residual
        noise_pred = pipe.unet(
            latents,
            t,
            encoder_hidden_states=prompt_embeds,
            cross_attention_kwargs=None,
            return_dict=False,
            timestep_cond=w_embedding,
            added_cond_kwargs=encoded_text,
        )[0]

        latents = predicted_origin(
            noise_pred,
            torch.tensor([t] * len(noise_pred)).to(device),
            torch.tensor([s] * len(noise_pred)).to(device),
            latents,
            pipe.scheduler.config.prediction_type,
            alpha_schedule,
            sigma_schedule,
        ).to(pipe.unet.dtype)

    pipe.vae.to(torch.float32)
    image = pipe.vae.decode(latents.to(torch.float32) / pipe.vae.config.scaling_factor, return_dict=False)[0]
    do_denormalize = [True] * image.shape[0]
    image = pipe.image_processor.postprocess(image, output_type="pil", do_denormalize=do_denormalize)

    if return_latent:
        return image, latents
    else:
        return image
# ------------------------------------------------------------------------