Spaces:
Running
on
Zero
Running
on
Zero
File size: 19,236 Bytes
1df36a0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 |
import torch
import copy
import random
import numpy as np
# Diffusion util
# ------------------------------------------------------------------------
def encode_prompt(prompt_batch, text_encoders, tokenizers, proportion_empty_prompts, is_train=True):
prompt_embeds_list = []
captions = []
for caption in prompt_batch:
if random.random() < proportion_empty_prompts:
captions.append("")
elif isinstance(caption, str):
captions.append(caption)
elif isinstance(caption, (list, np.ndarray)):
# take a random caption if there are multiple
captions.append(random.choice(caption) if is_train else caption[0])
with torch.no_grad():
for tokenizer, text_encoder in zip(tokenizers, text_encoders):
text_inputs = tokenizer(
captions,
padding="max_length",
max_length=tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
prompt_embeds = text_encoder(
text_input_ids.to(text_encoder.device),
output_hidden_states=True,
)
# We are only ALWAYS interested in the pooled output of the final text encoder
pooled_prompt_embeds = prompt_embeds[0]
prompt_embeds = prompt_embeds.hidden_states[-2]
bs_embed, seq_len, _ = prompt_embeds.shape
prompt_embeds = prompt_embeds.view(bs_embed, seq_len, -1)
prompt_embeds_list.append(prompt_embeds)
prompt_embeds = torch.concat(prompt_embeds_list, dim=-1)
pooled_prompt_embeds = pooled_prompt_embeds.view(bs_embed, -1)
return prompt_embeds, pooled_prompt_embeds
def compute_embeddings(
prompt_batch, original_sizes, crop_coords, proportion_empty_prompts, text_encoders, tokenizers, is_train=True,
device='cuda'
):
target_size = (1024, 1024)
original_sizes = original_sizes #list(map(list, zip(*original_sizes)))
crops_coords_top_left = crop_coords #list(map(list, zip(*crop_coords)))
original_sizes = torch.tensor(original_sizes, dtype=torch.long)
crops_coords_top_left = torch.tensor(crops_coords_top_left, dtype=torch.long)
prompt_embeds, pooled_prompt_embeds = encode_prompt(
prompt_batch, text_encoders, tokenizers, proportion_empty_prompts, is_train
)
add_text_embeds = pooled_prompt_embeds
# Adapted from pipeline.StableDiffusionXLPipeline._get_add_time_ids
add_time_ids = list(target_size)
add_time_ids = torch.tensor([add_time_ids])
add_time_ids = add_time_ids.repeat(len(prompt_batch), 1)
add_time_ids = torch.cat([original_sizes, crops_coords_top_left, add_time_ids], dim=-1)
add_time_ids = add_time_ids.to(device, dtype=prompt_embeds.dtype)
prompt_embeds = prompt_embeds.to(device)
add_text_embeds = add_text_embeds.to(device)
unet_added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
return {"prompt_embeds": prompt_embeds, **unet_added_cond_kwargs}
def extract_into_tensor(a, t, x_shape):
b, *_ = t.shape
out = a.gather(-1, t)
return out.reshape(b, *((1,) * (len(x_shape) - 1)))
def guidance_scale_embedding(w, embedding_dim=512, dtype=torch.float32):
"""
See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298
Args:
timesteps (`torch.Tensor`):
generate embedding vectors at these timesteps
embedding_dim (`int`, *optional*, defaults to 512):
dimension of the embeddings to generate
dtype:
data type of the generated embeddings
Returns:
`torch.FloatTensor`: Embedding vectors with shape `(len(timesteps), embedding_dim)`
"""
assert len(w.shape) == 1
w = w * 1000.0
half_dim = embedding_dim // 2
emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1)
emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb)
emb = w.to(dtype)[:, None] * emb[None, :]
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
if embedding_dim % 2 == 1: # zero pad
emb = torch.nn.functional.pad(emb, (0, 1))
assert emb.shape == (w.shape[0], embedding_dim)
return emb
def predicted_origin(model_output, timesteps, boundary_timesteps, sample, prediction_type, alphas, sigmas):
sigmas_s = extract_into_tensor(sigmas, boundary_timesteps, sample.shape)
alphas_s = extract_into_tensor(alphas, boundary_timesteps, sample.shape)
sigmas = extract_into_tensor(sigmas, timesteps, sample.shape)
alphas = extract_into_tensor(alphas, timesteps, sample.shape)
# Set hard boundaries to ensure equivalence with forward (direct) CD
alphas_s[boundary_timesteps == 0] = 1.0
sigmas_s[boundary_timesteps == 0] = 0.0
if prediction_type == "epsilon":
pred_x_0 = (sample - sigmas * model_output) / alphas # x0 prediction
pred_x_0 = alphas_s * pred_x_0 + sigmas_s * model_output # Euler step to the boundary step
elif prediction_type == "v_prediction":
assert boundary_timesteps == 0, "v_prediction does not support multiple endpoints at the moment"
pred_x_0 = alphas * sample - sigmas * model_output
else:
raise ValueError(f"Prediction type {prediction_type} currently not supported.")
return pred_x_0
class DDIMSolver:
def __init__(
self, alpha_cumprods, timesteps=1000, ddim_timesteps=50,
num_endpoints=1, num_inverse_endpoints=1,
max_inverse_timestep_index=49,
endpoints=None, inverse_endpoints=None
):
# DDIM sampling parameters
step_ratio = timesteps // ddim_timesteps
self.ddim_timesteps = (np.arange(1, ddim_timesteps + 1) * step_ratio).round().astype(
np.int64) - 1 # [19, ..., 999]
self.ddim_alpha_cumprods = alpha_cumprods[self.ddim_timesteps]
self.ddim_alpha_cumprods_prev = np.asarray(
[alpha_cumprods[0]] + alpha_cumprods[self.ddim_timesteps[:-1]].tolist()
)
self.ddim_alpha_cumprods_next = np.asarray(
alpha_cumprods[self.ddim_timesteps[1:]].tolist() + [0.0]
)
# convert to torch tensors
self.ddim_timesteps = torch.from_numpy(self.ddim_timesteps).long()
self.ddim_alpha_cumprods = torch.from_numpy(self.ddim_alpha_cumprods)
self.ddim_alpha_cumprods_prev = torch.from_numpy(self.ddim_alpha_cumprods_prev)
self.ddim_alpha_cumprods_next = torch.from_numpy(self.ddim_alpha_cumprods_next)
# Set endpoints for direct CTM
if endpoints is None:
timestep_interval = ddim_timesteps // num_endpoints + int(ddim_timesteps % num_endpoints > 0)
endpoint_idxs = torch.arange(timestep_interval, ddim_timesteps, timestep_interval) - 1
self.endpoints = torch.tensor([0] + self.ddim_timesteps[endpoint_idxs].tolist())
else:
self.endpoints = torch.tensor([int(endpoint) for endpoint in endpoints.split(',')])
assert len(self.endpoints) == num_endpoints
# Set endpoints for inverse CTM
if inverse_endpoints is None:
timestep_interval = ddim_timesteps // num_inverse_endpoints + int(
ddim_timesteps % num_inverse_endpoints > 0)
inverse_endpoint_idxs = torch.arange(timestep_interval, ddim_timesteps, timestep_interval) - 1
inverse_endpoint_idxs = torch.tensor(inverse_endpoint_idxs.tolist() + [max_inverse_timestep_index])
self.inverse_endpoints = self.ddim_timesteps[inverse_endpoint_idxs]
else:
self.inverse_endpoints = torch.tensor([int(endpoint) for endpoint in inverse_endpoints.split(',')])
assert len(self.inverse_endpoints) == num_inverse_endpoints
def to(self, device):
self.endpoints = self.endpoints.to(device)
self.inverse_endpoints = self.inverse_endpoints.to(device)
self.ddim_timesteps = self.ddim_timesteps.to(device)
self.ddim_alpha_cumprods = self.ddim_alpha_cumprods.to(device)
self.ddim_alpha_cumprods_prev = self.ddim_alpha_cumprods_prev.to(device)
self.ddim_alpha_cumprods_next = self.ddim_alpha_cumprods_next.to(device)
return self
def ddim_step(self, pred_x0, pred_noise, timestep_index):
alpha_cumprod_prev = extract_into_tensor(self.ddim_alpha_cumprods_prev, timestep_index, pred_x0.shape)
dir_xt = (1.0 - alpha_cumprod_prev).sqrt() * pred_noise
x_prev = alpha_cumprod_prev.sqrt() * pred_x0 + dir_xt
return x_prev
def inverse_ddim_step(self, pred_x0, pred_noise, timestep_index):
alpha_cumprod_next = extract_into_tensor(self.ddim_alpha_cumprods_next, timestep_index, pred_x0.shape)
dir_xt = (1.0 - alpha_cumprod_next).sqrt() * pred_noise
x_next = alpha_cumprod_next.sqrt() * pred_x0 + dir_xt
return x_next
# ------------------------------------------------------------------------
# Distillation specific
# ------------------------------------------------------------------------
def inverse_sample_deterministic(
pipe,
images,
prompt,
generator=None,
num_scales=50,
num_inference_steps=1,
timesteps=None,
start_timestep=19,
max_inverse_timestep_index=49,
return_start_latent=False,
guidance_scale=None, # Used only if the student has w_embedding
compute_embeddings_fn=None,
is_sdxl=False,
inverse_endpoints=None,
seed=0,
):
# assert isinstance(pipe, StableDiffusionImg2ImgPipeline), f"Does not support the pipeline {type(pipe)}"
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
device = pipe._execution_device
# Prepare text embeddings
if compute_embeddings_fn is not None:
if is_sdxl:
orig_size = [(1024, 1024)] * len(prompt)
crop_coords = [(0, 0)] * len(prompt)
encoded_text = compute_embeddings_fn(prompt, orig_size, crop_coords)
prompt_embeds = encoded_text.pop("prompt_embeds")
else:
prompt_embeds = compute_embeddings_fn(prompt)["prompt_embeds"]
encoded_text = {}
prompt_embeds = prompt_embeds.to(pipe.unet.dtype)
else:
prompt_embeds = pipe.encode_prompt(prompt, device, 1, False)[0]
encoded_text = {}
assert prompt_embeds.dtype == pipe.unet.dtype
# Prepare the DDIM solver
endpoints = ','.join(['0'] + inverse_endpoints.split(',')[:-1]) if inverse_endpoints is not None else None
solver = DDIMSolver(
pipe.scheduler.alphas_cumprod.cpu().numpy(),
timesteps=pipe.scheduler.num_train_timesteps,
ddim_timesteps=num_scales,
num_endpoints=num_inference_steps,
num_inverse_endpoints=num_inference_steps,
max_inverse_timestep_index=max_inverse_timestep_index,
endpoints=endpoints,
inverse_endpoints=inverse_endpoints
).to(device)
if timesteps is None:
timesteps = solver.inverse_endpoints.flip(0)
boundary_timesteps = solver.endpoints.flip(0)
else:
timesteps, boundary_timesteps = timesteps, timesteps
boundary_timesteps = boundary_timesteps[1:] + [boundary_timesteps[0]]
boundary_timesteps[-1] = 999
timesteps, boundary_timesteps = torch.tensor(timesteps), torch.tensor(boundary_timesteps)
alpha_schedule = torch.sqrt(pipe.scheduler.alphas_cumprod).to(device)
sigma_schedule = torch.sqrt(1 - pipe.scheduler.alphas_cumprod).to(device)
# 5. Prepare latent variables
num_channels_latents = pipe.unet.config.in_channels
start_latents = pipe.prepare_latents(
images, timesteps[0], batch_size, 1, prompt_embeds.dtype, device,
generator=torch.Generator().manual_seed(seed),
)
latents = start_latents.clone()
if guidance_scale is not None:
w = torch.ones(batch_size) * guidance_scale
w_embedding = guidance_scale_embedding(w, embedding_dim=512)
w_embedding = w_embedding.to(device=latents.device, dtype=latents.dtype)
else:
w_embedding = None
for i, (t, s) in enumerate(zip(timesteps, boundary_timesteps)):
# predict the noise residual
noise_pred = pipe.unet(
latents.to(prompt_embeds.dtype),
t,
encoder_hidden_states=prompt_embeds,
return_dict=False,
timestep_cond=w_embedding,
added_cond_kwargs=encoded_text,
)[0]
latents = predicted_origin(
noise_pred,
torch.tensor([t] * len(latents), device=device),
torch.tensor([s] * len(latents), device=device),
latents,
pipe.scheduler.config.prediction_type,
alpha_schedule,
sigma_schedule,
).to(prompt_embeds.dtype)
if return_start_latent:
return latents, start_latents
else:
return latents
def linear_schedule_old(t, guidance_scale, tau1, tau2):
t = t / 1000
if t <= tau1:
gamma = 1.0
elif t >= tau2:
gamma = 0.0
else:
gamma = (tau2 - t) / (tau2 - tau1)
return gamma * guidance_scale
@torch.no_grad()
def sample_deterministic(
pipe,
prompt,
latents=None,
generator=None,
num_scales=50,
num_inference_steps=1,
timesteps=None,
start_timestep=19,
max_inverse_timestep_index=49,
return_latent=False,
guidance_scale=None, # Used only if the student has w_embedding
compute_embeddings_fn=None,
is_sdxl=False,
endpoints=None,
use_dynamic_guidance=False,
tau1=0.7,
tau2=0.7,
amplify_prompt=None,
):
# assert isinstance(pipe, StableDiffusionPipeline), f"Does not support the pipeline {type(pipe)}"
height = pipe.unet.config.sample_size * pipe.vae_scale_factor
width = pipe.unet.config.sample_size * pipe.vae_scale_factor
# 1. Define call parameters
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
device = pipe._execution_device
# Prepare text embeddings
if compute_embeddings_fn is not None:
if is_sdxl:
orig_size = [(1024, 1024)] * len(prompt)
crop_coords = [(0, 0)] * len(prompt)
encoded_text = compute_embeddings_fn(prompt, orig_size, crop_coords)
prompt_embeds = encoded_text.pop("prompt_embeds")
if amplify_prompt is not None:
orig_size = [(1024, 1024)] * len(amplify_prompt)
crop_coords = [(0, 0)] * len(amplify_prompt)
encoded_text_old = compute_embeddings_fn(amplify_prompt, orig_size, crop_coords)
amplify_prompt_embeds = encoded_text_old.pop("prompt_embeds")
else:
prompt_embeds = compute_embeddings_fn(prompt)["prompt_embeds"]
encoded_text = {}
prompt_embeds = prompt_embeds.to(pipe.unet.dtype)
else:
prompt_embeds = pipe.encode_prompt(prompt, device, 1, False)[0]
encoded_text = {}
assert prompt_embeds.dtype == pipe.unet.dtype
# Prepare the DDIM solver
inverse_endpoints = ','.join(endpoints.split(',')[1:] + ['999']) if endpoints is not None else None
solver = DDIMSolver(
pipe.scheduler.alphas_cumprod.numpy(),
timesteps=pipe.scheduler.num_train_timesteps,
ddim_timesteps=num_scales,
num_endpoints=num_inference_steps,
num_inverse_endpoints=num_inference_steps,
max_inverse_timestep_index=max_inverse_timestep_index,
endpoints=endpoints,
inverse_endpoints=inverse_endpoints
).to(device)
prompt_embeds_init = copy.deepcopy(prompt_embeds)
if timesteps is None:
timesteps = solver.inverse_endpoints.flip(0)
boundary_timesteps = solver.endpoints.flip(0)
else:
timesteps, boundary_timesteps = copy.deepcopy(timesteps), copy.deepcopy(timesteps)
timesteps.reverse()
boundary_timesteps.reverse()
boundary_timesteps = boundary_timesteps[1:] + [boundary_timesteps[0]]
boundary_timesteps[-1] = 0
timesteps, boundary_timesteps = torch.tensor(timesteps), torch.tensor(boundary_timesteps)
alpha_schedule = torch.sqrt(pipe.scheduler.alphas_cumprod).to(device)
sigma_schedule = torch.sqrt(1 - pipe.scheduler.alphas_cumprod).to(device)
# 5. Prepare latent variables
if latents is None:
num_channels_latents = pipe.unet.config.in_channels
latents = pipe.prepare_latents(
batch_size,
num_channels_latents,
height,
width,
prompt_embeds.dtype,
device,
generator,
None,
)
assert latents.dtype == pipe.unet.dtype
else:
latents = latents.to(prompt_embeds.dtype)
if guidance_scale is not None:
w = torch.ones(batch_size) * guidance_scale
w_embedding = guidance_scale_embedding(w, embedding_dim=512)
w_embedding = w_embedding.to(device=latents.device, dtype=latents.dtype)
else:
w_embedding = None
for i, (t, s) in enumerate(zip(timesteps, boundary_timesteps)):
if use_dynamic_guidance:
if not isinstance(t, int):
t_item = t.item()
if t_item > tau1 * 1000 and amplify_prompt is not None:
prompt_embeds = amplify_prompt_embeds
else:
prompt_embeds = prompt_embeds_init
guidance_scale = linear_schedule_old(t_item, w, tau1=tau1, tau2=tau2)
guidance_scale_tensor = torch.tensor([guidance_scale] * len(latents))
w_embedding = guidance_scale_embedding(guidance_scale_tensor, embedding_dim=512)
w_embedding = w_embedding.to(device=latents.device, dtype=latents.dtype)
# predict the noise residual
noise_pred = pipe.unet(
latents,
t,
encoder_hidden_states=prompt_embeds,
cross_attention_kwargs=None,
return_dict=False,
timestep_cond=w_embedding,
added_cond_kwargs=encoded_text,
)[0]
latents = predicted_origin(
noise_pred,
torch.tensor([t] * len(noise_pred)).to(device),
torch.tensor([s] * len(noise_pred)).to(device),
latents,
pipe.scheduler.config.prediction_type,
alpha_schedule,
sigma_schedule,
).to(pipe.unet.dtype)
pipe.vae.to(torch.float32)
image = pipe.vae.decode(latents.to(torch.float32) / pipe.vae.config.scaling_factor, return_dict=False)[0]
do_denormalize = [True] * image.shape[0]
image = pipe.image_processor.postprocess(image, output_type="pil", do_denormalize=do_denormalize)
if return_latent:
return image, latents
else:
return image
# ------------------------------------------------------------------------
|