Spaces:
Running
on
Zero
Running
on
Zero
import spaces | |
import gradio as gr | |
import numpy as np | |
import random | |
import generation_sdxl | |
import functools | |
from diffusers import DiffusionPipeline, UNet2DConditionModel, StableDiffusionXLPipeline, DDIMScheduler | |
import torch | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
torch.cuda.max_memory_allocated(device=device) | |
model_id = 'stabilityai/stable-diffusion-xl-base-1.0' | |
pipe = StableDiffusionXLPipeline.from_pretrained(model_id, | |
torch_dtype=torch.float16, | |
scheduler=DDIMScheduler.from_pretrained(model_id, subfolder="scheduler"), | |
variant="fp16").to(device) | |
pipe = pipe.to(device) | |
unet = UNet2DConditionModel.from_pretrained("dbaranchuk/sdxl-cfg-distill-unet").to(device) | |
pipe.unet = unet | |
pipe.load_lora_weights("dbaranchuk/icd-lora-sdxl", | |
weight_name='reverse-249-499-699-999.safetensors') | |
pipe.fuse_lora() | |
pipe.to(dtype=torch.float16, device=device) | |
MAX_SEED = np.iinfo(np.int32).max | |
MAX_IMAGE_SIZE = 1024 | |
def infer(prompt, seed, randomize_seed, tau, | |
guidance_scale): | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
generator = torch.Generator().manual_seed(seed) | |
prompt = [prompt] | |
text_encoders = [pipe.text_encoder, pipe.text_encoder_2] | |
tokenizers = [pipe.tokenizer, pipe.tokenizer_2] | |
compute_embeddings_fn = functools.partial( | |
generation_sdxl.compute_embeddings, | |
proportion_empty_prompts=0, | |
text_encoders=text_encoders, | |
tokenizers=tokenizers, | |
) | |
if tau < 1.0: | |
use_dynamic_guidance=True | |
else: | |
use_dynamic_guidance=False | |
images = generation_sdxl.sample_deterministic( | |
pipe, | |
prompt, | |
num_inference_steps=4, | |
generator=generator, | |
guidance_scale=guidance_scale, | |
is_sdxl=True, | |
timesteps=[249, 499, 699, 999], | |
use_dynamic_guidance=use_dynamic_guidance, | |
tau1=tau, | |
tau2=tau, | |
compute_embeddings_fn=compute_embeddings_fn | |
)[0] | |
return images | |
examples = [ | |
"An astronaut riding a green horse", | |
'Long-exposure night photography of a starry sky over a mountain range, with light trails.', | |
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", | |
"A portrait of a girl with blonde, tousled hair, blue eyes", | |
] | |
css=""" | |
#col-container { | |
margin: 0 auto; | |
max-width: 520px; | |
} | |
""" | |
if torch.cuda.is_available(): | |
power_device = "GPU" | |
else: | |
power_device = "CPU" | |
with gr.Blocks(css=css) as demo: | |
with gr.Column(elem_id="col-container"): | |
gr.Markdown( | |
f""" | |
# ⚡ Invertible Consistency Distillation ⚡ | |
# ⚡ Image Generation with 4-step iCD-XL ⚡ | |
This is a demo of [Invertible Consistency Distillation](https://yandex-research.github.io/invertible-cd/), | |
a diffusion distillation method proposed in [Invertible Consistency Distillation for Text-Guided Image Editing in Around 7 Steps](https://arxiv.org/abs/2406.14539) | |
by [Yandex Research](https://github.com/yandex-research). | |
Currently running on {power_device}. | |
""" | |
) | |
gr.Markdown( | |
"Feel free to check out our [image editing demo](https://huggingface.co/spaces/dbaranchuk/iCD-image-editing) as well." | |
) | |
gr.Markdown( | |
"If you enjoy the space, feel free to give a ⭐ to the <a href='https://github.com/yandex-research/invertible-cd' target='_blank'>Github Repo</a>. [![GitHub Stars](https://img.shields.io/github/stars/yandex-research/invertible-cd?style=social)](https://github.com/yandex-research/invertible-cd)" | |
) | |
with gr.Row(): | |
prompt = gr.Text( | |
label="Prompt", | |
show_label=False, | |
max_lines=1, | |
placeholder="Enter your prompt", | |
container=False, | |
) | |
run_button = gr.Button("Run", scale=0) | |
result = gr.Image(label="Result", show_label=False) | |
with gr.Accordion("Advanced Settings", open=False): | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=0, | |
) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=False) | |
with gr.Row(): | |
guidance_scale = gr.Slider( | |
label="Guidance scale", | |
minimum=0.0, | |
maximum=19.0, | |
step=1.0, | |
value=7.0, | |
) | |
dynamic_guidance_tau = gr.Slider( | |
label="Dynamic guidance tau", | |
minimum=0, | |
maximum=1, | |
step=0.1, | |
value=1.0, | |
) | |
gr.Examples( | |
examples = examples, | |
inputs = [prompt], | |
cache_examples=False | |
) | |
run_button.click( | |
fn = infer, | |
inputs = [prompt, seed, randomize_seed, dynamic_guidance_tau, guidance_scale], | |
outputs = [result] | |
) | |
demo.queue().launch(share=False) | |