Spaces:
Running
Running
dbleek
commited on
Commit
·
24c49f4
1
Parent(s):
d86b016
removed old classifier
Browse files- milestone-3.py +38 -28
- patent_classifier_v2.pt → patent_classifier.pt +0 -0
milestone-3.py
CHANGED
@@ -1,67 +1,77 @@
|
|
1 |
import streamlit as st
|
2 |
import torch
|
3 |
from datasets import load_dataset
|
4 |
-
from transformers import AutoTokenizer
|
5 |
from transformers import AutoModelForSequenceClassification
|
6 |
from transformers import pipeline
|
7 |
|
8 |
# Load HUPD dataset
|
9 |
-
dataset_dict = load_dataset(
|
10 |
-
|
11 |
-
|
|
|
12 |
icpr_label=None,
|
13 |
-
train_filing_start_date=
|
14 |
-
train_filing_end_date=
|
15 |
-
val_filing_start_date=
|
16 |
-
val_filing_end_date=
|
17 |
)
|
18 |
|
19 |
# Process data
|
20 |
-
filtered_dataset = dataset_dict[
|
|
|
|
|
21 |
dataset = filtered_dataset.shuffle(seed=42).select(range(20))
|
22 |
dataset = dataset.sort("patent_number")
|
23 |
|
24 |
# Create pipeline using model trainned on Colab
|
25 |
-
model = torch.load("patent_classifier.pt", map_location=torch.device(
|
26 |
tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")
|
27 |
classifier = pipeline("text-classification", model=model, tokenizer=tokenizer)
|
28 |
|
|
|
29 |
def load_patent():
|
30 |
selected_application = dataset.select([applications[st.session_state.id]])
|
31 |
-
st.session_state.abstract = selected_application[
|
32 |
-
st.session_state.claims = selected_application[
|
33 |
-
st.session_state.title = selected_application[
|
|
|
34 |
|
35 |
st.title("CS-GY-6613 Project Milestone 3")
|
36 |
|
37 |
# List patent numbers for select box
|
38 |
applications = {}
|
39 |
for ds_index, example in enumerate(dataset):
|
40 |
-
applications.update({example[
|
41 |
-
st.selectbox(
|
|
|
|
|
42 |
|
43 |
# Application title displayed for additional context only, not used with model
|
44 |
-
st.text_area("Title", key="title", value=dataset[0][
|
45 |
|
46 |
# Classifier input form
|
47 |
-
with st.form(
|
48 |
-
abstract = st.text_area(
|
49 |
-
|
|
|
|
|
|
|
|
|
50 |
submitted = st.form_submit_button("Get Patentability Score")
|
51 |
|
52 |
if submitted:
|
53 |
selected_application = dataset.select([applications[st.session_state.id]])
|
54 |
res = classifier(abstract, claims)
|
55 |
-
if res[0]["label"] ==
|
56 |
pred = "ACCEPTED"
|
57 |
-
elif res[0]["label"] ==
|
58 |
pred = "REJECTED"
|
59 |
score = res[0]["score"]
|
60 |
-
label = selected_application[
|
61 |
-
result = st.markdown(
|
|
|
|
|
|
|
|
|
62 |
check = st.markdown("Actual Label: **{}**.".format(label))
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
|
|
1 |
import streamlit as st
|
2 |
import torch
|
3 |
from datasets import load_dataset
|
4 |
+
from transformers import AutoTokenizer
|
5 |
from transformers import AutoModelForSequenceClassification
|
6 |
from transformers import pipeline
|
7 |
|
8 |
# Load HUPD dataset
|
9 |
+
dataset_dict = load_dataset(
|
10 |
+
"HUPD/hupd",
|
11 |
+
name="sample",
|
12 |
+
data_files="https://huggingface.co/datasets/HUPD/hupd/blob/main/hupd_metadata_2022-02-22.feather",
|
13 |
icpr_label=None,
|
14 |
+
train_filing_start_date="2016-01-01",
|
15 |
+
train_filing_end_date="2016-01-21",
|
16 |
+
val_filing_start_date="2016-01-22",
|
17 |
+
val_filing_end_date="2016-01-31",
|
18 |
)
|
19 |
|
20 |
# Process data
|
21 |
+
filtered_dataset = dataset_dict["validation"].filter(
|
22 |
+
lambda e: e["decision"] == "ACCEPTED" or e["decision"] == "REJECTED"
|
23 |
+
)
|
24 |
dataset = filtered_dataset.shuffle(seed=42).select(range(20))
|
25 |
dataset = dataset.sort("patent_number")
|
26 |
|
27 |
# Create pipeline using model trainned on Colab
|
28 |
+
model = torch.load("patent_classifier.pt", map_location=torch.device("cpu"))
|
29 |
tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")
|
30 |
classifier = pipeline("text-classification", model=model, tokenizer=tokenizer)
|
31 |
|
32 |
+
|
33 |
def load_patent():
|
34 |
selected_application = dataset.select([applications[st.session_state.id]])
|
35 |
+
st.session_state.abstract = selected_application["abstract"][0]
|
36 |
+
st.session_state.claims = selected_application["claims"][0]
|
37 |
+
st.session_state.title = selected_application["title"][0]
|
38 |
+
|
39 |
|
40 |
st.title("CS-GY-6613 Project Milestone 3")
|
41 |
|
42 |
# List patent numbers for select box
|
43 |
applications = {}
|
44 |
for ds_index, example in enumerate(dataset):
|
45 |
+
applications.update({example["patent_number"]: ds_index})
|
46 |
+
st.selectbox(
|
47 |
+
"Select a patent application:", applications, on_change=load_patent, key="id"
|
48 |
+
)
|
49 |
|
50 |
# Application title displayed for additional context only, not used with model
|
51 |
+
st.text_area("Title", key="title", value=dataset[0]["title"], height=50)
|
52 |
|
53 |
# Classifier input form
|
54 |
+
with st.form("Input Form"):
|
55 |
+
abstract = st.text_area(
|
56 |
+
"Abstract", key="abstract", value=dataset[0]["abstract"], height=200
|
57 |
+
)
|
58 |
+
claims = st.text_area(
|
59 |
+
"Claims", key="claims", value=dataset[0]["abstract"], height=200
|
60 |
+
)
|
61 |
submitted = st.form_submit_button("Get Patentability Score")
|
62 |
|
63 |
if submitted:
|
64 |
selected_application = dataset.select([applications[st.session_state.id]])
|
65 |
res = classifier(abstract, claims)
|
66 |
+
if res[0]["label"] == "LABEL_0":
|
67 |
pred = "ACCEPTED"
|
68 |
+
elif res[0]["label"] == "LABEL_1":
|
69 |
pred = "REJECTED"
|
70 |
score = res[0]["score"]
|
71 |
+
label = selected_application["decision"][0]
|
72 |
+
result = st.markdown(
|
73 |
+
"This text was classified as **{}** with a confidence score of **{}**.".format(
|
74 |
+
pred, score
|
75 |
+
)
|
76 |
+
)
|
77 |
check = st.markdown("Actual Label: **{}**.".format(label))
|
|
|
|
|
|
|
|
|
|
patent_classifier_v2.pt → patent_classifier.pt
RENAMED
File without changes
|