Spaces:
Running
Running
try: | |
import detectron2 | |
except: | |
import os | |
os.system('pip install git+https://github.com/facebookresearch/detectron2.git') | |
from matplotlib.pyplot import axis | |
import gradio as gr | |
import requests | |
import numpy as np | |
from torch import nn | |
import requests | |
import torch | |
from detectron2 import model_zoo | |
from detectron2.engine import DefaultPredictor | |
from detectron2.config import get_cfg | |
from detectron2.utils.visualizer import Visualizer | |
from detectron2.data import MetadataCatalog | |
model_path = "https://huggingface.co/dbmdz/detectron2-model/resolve/main/model_final.pth" | |
cfg = get_cfg() | |
cfg.merge_from_file("./configs/detectron2/faster_rcnn_R_50_FPN_3x.yaml") | |
cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.8 | |
cfg.MODEL.ROI_HEADS.NUM_CLASSES = 2 | |
cfg.MODEL.WEIGHTS = model_path | |
my_metadata = MetadataCatalog.get("dbmdz_coco_all") | |
my_metadata.thing_classes = ["Illumination", "Illustration"] | |
if not torch.cuda.is_available(): | |
cfg.MODEL.DEVICE='cpu' | |
predictor = DefaultPredictor(cfg) | |
def inference(image): | |
print(image.height) | |
height = image.height | |
img = np.array(image) | |
outputs = predictor(img) | |
v = Visualizer(img, my_metadata, scale=1.2) | |
out = v.draw_instance_predictions(outputs["instances"].to("cpu")) | |
return out.get_image() | |
title = "DBMDZ Detectron2 Model Demo" | |
description = "This demo introduces an interactive playground for our trained Detectron2 model. <br>The model was trained on manually annotated segments from digitized books to detect Illustration or Illumination segments on a given page. <br>Minimum score for classification is set to 80%." | |
article = '<p>Detectron model is available from our repository <a href="">here</a> on the Hugging Face Model Hub.</p>' | |
gr.Interface( | |
inference, | |
[gr.inputs.Image(type="pil", label="Input")], | |
gr.outputs.Image(type="numpy", label="Output"), | |
title=title, | |
description=description, | |
article=article, | |
examples=[]).launch() | |