Spaces:
Running
Running
try: | |
import detectron2 | |
except: | |
import os | |
os.system('pip install git+https://github.com/facebookresearch/detectron2.git') | |
import cv2 | |
from matplotlib.pyplot import axis | |
import gradio as gr | |
import requests | |
import numpy as np | |
from torch import nn | |
import requests | |
import torch | |
from detectron2 import model_zoo | |
from detectron2.engine import DefaultPredictor | |
from detectron2.config import get_cfg | |
from detectron2.utils.visualizer import Visualizer | |
from detectron2.data import MetadataCatalog | |
model_path = "https://huggingface.co/dbmdz/detectron2-model/resolve/main/model_final.pth" | |
cfg = get_cfg() | |
cfg.merge_from_file("./configs/detectron2/faster_rcnn_R_50_FPN_3x.yaml") | |
cfg.MODEL.ROI_HEADS.NUM_CLASSES = 2 | |
cfg.MODEL.WEIGHTS = model_path | |
my_metadata = MetadataCatalog.get("dbmdz_coco_all") | |
my_metadata.thing_classes = ["Illumination", "Illustration"] | |
if not torch.cuda.is_available(): | |
cfg.MODEL.DEVICE = "cpu" | |
def inference(image_url, image, min_score): | |
if image_url: | |
r = requests.get(image_url) | |
if r: | |
im = np.frombuffer(r.content, dtype="uint8") | |
im = cv2.imdecode(im, cv2.IMREAD_COLOR) | |
else: | |
# Model expect BGR! | |
im = image[:,:,::-1] | |
cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = min_score | |
predictor = DefaultPredictor(cfg) | |
outputs = predictor(im) | |
v = Visualizer(im, my_metadata, scale=1.2) | |
out = v.draw_instance_predictions(outputs["instances"].to("cpu")) | |
return out.get_image() | |
title = "DBMDZ Detectron2 Model Demo" | |
description = "This demo introduces an interactive playground for our trained Detectron2 model. <br>The model was trained on manually annotated segments from digitized books to detect Illustration or Illumination segments on a given page." | |
article = '<p>Detectron model is available from our repository <a href="">here</a> on the Hugging Face Model Hub.</p>' | |
gr.Interface( | |
inference, | |
[gr.inputs.Textbox(label="Image URL", placeholder="https://api.digitale-sammlungen.de/iiif/image/v2/bsb10483966_00008/full/500,/0/default.jpg"), | |
gr.inputs.Image(type="numpy", label="Input Image"), | |
gr.Slider(minimum=0.0, maximum=1.0, value=0.5, label="Minimum score:"), | |
], | |
gr.outputs.Image(type="pil", label="Output"), | |
title=title, | |
description=description, | |
article=article, | |
examples=[]).launch() | |