Spaces:
Sleeping
Sleeping
dbouget
commited on
Commit
·
9d26f07
1
Parent(s):
a53b581
Overall update to match Raidionics v1.3
Browse files- .github/workflows/deploy.yml +1 -1
- Dockerfile +4 -12
- requirements.txt +2 -2
- src/gui.py +115 -90
- src/inference.py +37 -19
.github/workflows/deploy.yml
CHANGED
@@ -10,7 +10,7 @@ jobs:
|
|
10 |
sync-to-hub:
|
11 |
runs-on: ubuntu-latest
|
12 |
steps:
|
13 |
-
- uses: actions/checkout@
|
14 |
with:
|
15 |
fetch-depth: 0
|
16 |
lfs: true
|
|
|
10 |
sync-to-hub:
|
11 |
runs-on: ubuntu-latest
|
12 |
steps:
|
13 |
+
- uses: actions/checkout@v4
|
14 |
with:
|
15 |
fetch-depth: 0
|
16 |
lfs: true
|
Dockerfile
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
# read the doc: https://huggingface.co/docs/hub/spaces-sdks-docker
|
2 |
# you will also find guides on how best to write your Dockerfile
|
3 |
-
FROM python:3.
|
4 |
|
5 |
# set language, format and stuff
|
6 |
ENV LANG=C.UTF-8 LC_ALL=C.UTF-8
|
@@ -30,7 +30,7 @@ COPY ./requirements.txt /code/requirements.txt
|
|
30 |
RUN pip install --no-cache-dir --upgrade -r /code/requirements.txt
|
31 |
|
32 |
# resolve issue with tf==2.4 and gradio dependency collision issue
|
33 |
-
RUN pip install --force-reinstall typing_extensions==4.7.1
|
34 |
|
35 |
# Install wget
|
36 |
RUN apt install wget -y && \
|
@@ -54,16 +54,8 @@ COPY --chown=user . $HOME/app
|
|
54 |
|
55 |
# Download pretrained models
|
56 |
RUN mkdir -p resources/models/
|
57 |
-
RUN wget "https://github.com/raidionics/Raidionics-models/releases/download/
|
58 |
-
unzip "
|
59 |
-
RUN wget "https://github.com/raidionics/Raidionics-models/releases/download/1.2.0/Raidionics-MRI_GBM-ONNX-v12.zip" && \
|
60 |
-
unzip "Raidionics-MRI_GBM-ONNX-v12.zip" && mv MRI_GBM/ resources/models/MRI_GBM/
|
61 |
-
RUN wget "https://github.com/raidionics/Raidionics-models/releases/download/1.2.0/Raidionics-MRI_LGGlioma-ONNX-v12.zip" && \
|
62 |
-
unzip "Raidionics-MRI_LGGlioma-ONNX-v12.zip" && mv MRI_LGGlioma/ resources/models/MRI_LGGlioma/
|
63 |
-
RUN wget "https://github.com/raidionics/Raidionics-models/releases/download/1.2.0/Raidionics-MRI_Meningioma-ONNX-v12.zip" && \
|
64 |
-
unzip "Raidionics-MRI_Meningioma-ONNX-v12.zip" && mv MRI_Meningioma/ resources/models/MRI_Meningioma/
|
65 |
-
RUN wget "https://github.com/raidionics/Raidionics-models/releases/download/1.2.0/Raidionics-MRI_Metastasis-ONNX-v12.zip" && \
|
66 |
-
unzip "Raidionics-MRI_Metastasis-ONNX-v12.zip" && mv MRI_Metastasis/ resources/models/MRI_Metastasis/
|
67 |
|
68 |
RUN rm -r *.zip
|
69 |
|
|
|
1 |
# read the doc: https://huggingface.co/docs/hub/spaces-sdks-docker
|
2 |
# you will also find guides on how best to write your Dockerfile
|
3 |
+
FROM python:3.10-slim
|
4 |
|
5 |
# set language, format and stuff
|
6 |
ENV LANG=C.UTF-8 LC_ALL=C.UTF-8
|
|
|
30 |
RUN pip install --no-cache-dir --upgrade -r /code/requirements.txt
|
31 |
|
32 |
# resolve issue with tf==2.4 and gradio dependency collision issue
|
33 |
+
# RUN pip install --force-reinstall typing_extensions==4.7.1
|
34 |
|
35 |
# Install wget
|
36 |
RUN apt install wget -y && \
|
|
|
54 |
|
55 |
# Download pretrained models
|
56 |
RUN mkdir -p resources/models/
|
57 |
+
RUN wget "https://github.com/raidionics/Raidionics-models/releases/download/v1.3.0-rc/Raidionics_HF_Neuro_Resources-v13.zip" && \
|
58 |
+
unzip "Raidionics_HF_Neuro_Resources-v13.zip" -d resources/models/
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
|
60 |
RUN rm -r *.zip
|
61 |
|
requirements.txt
CHANGED
@@ -1,2 +1,2 @@
|
|
1 |
-
raidionicsrads
|
2 |
-
gradio
|
|
|
1 |
+
raidionicsrads
|
2 |
+
gradio
|
src/gui.py
CHANGED
@@ -1,6 +1,9 @@
|
|
1 |
import os
|
2 |
|
3 |
import gradio as gr
|
|
|
|
|
|
|
4 |
|
5 |
from .inference import run_model
|
6 |
from .utils import load_pred_volume_to_numpy
|
@@ -15,50 +18,47 @@ class WebUI:
|
|
15 |
cwd: str = "/home/user/app/",
|
16 |
share: int = 1,
|
17 |
):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
# global states
|
19 |
self.images = []
|
20 |
self.pred_images = []
|
21 |
-
|
22 |
-
# @TODO: This should be dynamically set based on chosen volume size
|
23 |
-
self.nb_slider_items = 512
|
24 |
|
25 |
self.model_name = model_name
|
26 |
self.cwd = cwd
|
27 |
self.share = share
|
28 |
|
29 |
-
self.class_name = "
|
30 |
self.class_names = {
|
31 |
-
"
|
32 |
-
"
|
33 |
-
"
|
34 |
-
"
|
35 |
"brain": "MRI_Brain",
|
36 |
}
|
37 |
|
38 |
self.result_names = {
|
39 |
-
"
|
40 |
-
"
|
41 |
-
"
|
42 |
-
"
|
43 |
"brain": "Brain",
|
44 |
}
|
45 |
|
46 |
-
# define widgets not to be rendered immediately, but later on
|
47 |
-
self.slider = gr.Slider(
|
48 |
-
minimum=1,
|
49 |
-
maximum=self.nb_slider_items,
|
50 |
-
value=1,
|
51 |
-
step=1,
|
52 |
-
label="Which 2D slice to show",
|
53 |
-
interactive=True,
|
54 |
-
)
|
55 |
-
|
56 |
self.volume_renderer = gr.Model3D(
|
57 |
clear_color=[0.0, 0.0, 0.0, 0.0],
|
58 |
label="3D Model",
|
59 |
visible=True,
|
60 |
elem_id="model-3d",
|
61 |
-
|
|
|
62 |
|
63 |
def set_class_name(self, value):
|
64 |
print("Changed task to:", value)
|
@@ -70,35 +70,97 @@ class WebUI:
|
|
70 |
def upload_file(self, file):
|
71 |
return file.name
|
72 |
|
73 |
-
def process(self, mesh_file_name):
|
74 |
path = mesh_file_name.name
|
75 |
run_model(
|
76 |
path,
|
77 |
model_path=os.path.join(self.cwd, "resources/models/"),
|
78 |
task=self.class_names[self.class_name],
|
79 |
name=self.result_names[self.class_name],
|
|
|
80 |
)
|
81 |
nifti_to_glb("prediction.nii.gz")
|
82 |
|
83 |
self.images = load_to_numpy(path)
|
84 |
-
# @TODO. Dynamic update of the slider does not seem to work like this
|
85 |
-
# self.nb_slider_items = len(self.images)
|
86 |
-
# self.slider.update(value=int(self.nb_slider_items/2), maximum=self.nb_slider_items)
|
87 |
|
88 |
self.pred_images = load_pred_volume_to_numpy("./prediction.nii.gz")
|
89 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
|
91 |
def get_img_pred_pair(self, k):
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
|
103 |
def run(self):
|
104 |
css = """
|
@@ -114,66 +176,29 @@ class WebUI:
|
|
114 |
}
|
115 |
"""
|
116 |
with gr.Blocks(css=css) as demo:
|
117 |
-
|
118 |
-
|
119 |
-
file_output.upload(self.upload_file, file_output, file_output)
|
120 |
-
|
121 |
-
model_selector = gr.Dropdown(
|
122 |
-
list(self.class_names.keys()),
|
123 |
-
label="Segmentation task",
|
124 |
-
info="Select the preoperative segmentation model to run",
|
125 |
-
multiselect=False,
|
126 |
-
size="sm",
|
127 |
-
)
|
128 |
-
model_selector.input(
|
129 |
-
fn=lambda x: self.set_class_name(x),
|
130 |
-
inputs=model_selector,
|
131 |
-
outputs=None,
|
132 |
-
)
|
133 |
-
|
134 |
-
run_btn = gr.Button("Run segmentation").style(
|
135 |
-
full_width=False, size="lg"
|
136 |
-
)
|
137 |
-
run_btn.click(
|
138 |
-
fn=lambda x: self.process(x),
|
139 |
-
inputs=file_output,
|
140 |
-
outputs=self.volume_renderer,
|
141 |
-
)
|
142 |
-
|
143 |
with gr.Row():
|
144 |
gr.Examples(
|
145 |
examples=[
|
146 |
os.path.join(self.cwd, "t1gd.nii.gz"),
|
147 |
],
|
148 |
-
inputs=file_output,
|
149 |
-
outputs=file_output,
|
150 |
fn=self.upload_file,
|
151 |
cache_examples=True,
|
152 |
)
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
height=512,
|
165 |
-
width=512,
|
166 |
-
)
|
167 |
-
image_boxes.append(t)
|
168 |
-
|
169 |
-
self.slider.input(
|
170 |
-
self.get_img_pred_pair, self.slider, image_boxes
|
171 |
-
)
|
172 |
-
|
173 |
-
self.slider.render()
|
174 |
-
|
175 |
-
with gr.Box():
|
176 |
-
self.volume_renderer.render()
|
177 |
|
178 |
# sharing app publicly -> share=True:
|
179 |
# https://gradio.app/sharing-your-app/
|
|
|
1 |
import os
|
2 |
|
3 |
import gradio as gr
|
4 |
+
from PIL import Image
|
5 |
+
import logging
|
6 |
+
from zipfile import ZipFile
|
7 |
|
8 |
from .inference import run_model
|
9 |
from .utils import load_pred_volume_to_numpy
|
|
|
18 |
cwd: str = "/home/user/app/",
|
19 |
share: int = 1,
|
20 |
):
|
21 |
+
self.file_output = None
|
22 |
+
self.model_selector = None
|
23 |
+
self.stripped_cb = None
|
24 |
+
self.registered_cb = None
|
25 |
+
self.run_btn = None
|
26 |
+
self.slider = None
|
27 |
+
self.download_file = None
|
28 |
+
|
29 |
# global states
|
30 |
self.images = []
|
31 |
self.pred_images = []
|
32 |
+
self.image_boxes = []
|
|
|
|
|
33 |
|
34 |
self.model_name = model_name
|
35 |
self.cwd = cwd
|
36 |
self.share = share
|
37 |
|
38 |
+
self.class_name = "tumorcore" # default
|
39 |
self.class_names = {
|
40 |
+
"tumorcore": "MRI_TumorCore",
|
41 |
+
"NETC": "MRI_Necrosis",
|
42 |
+
"residual-tumor": "MRI_TumorCE_Postop",
|
43 |
+
"cavity": "MRI_Cavity",
|
44 |
"brain": "MRI_Brain",
|
45 |
}
|
46 |
|
47 |
self.result_names = {
|
48 |
+
"tumorcore": "Tumor",
|
49 |
+
"NETC": "NETC",
|
50 |
+
"residual-tumor": "Tumor",
|
51 |
+
"cavity": "Cavity",
|
52 |
"brain": "Brain",
|
53 |
}
|
54 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
self.volume_renderer = gr.Model3D(
|
56 |
clear_color=[0.0, 0.0, 0.0, 0.0],
|
57 |
label="3D Model",
|
58 |
visible=True,
|
59 |
elem_id="model-3d",
|
60 |
+
height=512,
|
61 |
+
)
|
62 |
|
63 |
def set_class_name(self, value):
|
64 |
print("Changed task to:", value)
|
|
|
70 |
def upload_file(self, file):
|
71 |
return file.name
|
72 |
|
73 |
+
def process(self, mesh_file_name, stripped_inputs_status:bool=False):
|
74 |
path = mesh_file_name.name
|
75 |
run_model(
|
76 |
path,
|
77 |
model_path=os.path.join(self.cwd, "resources/models/"),
|
78 |
task=self.class_names[self.class_name],
|
79 |
name=self.result_names[self.class_name],
|
80 |
+
stripped_inputs_status=stripped_inputs_status,
|
81 |
)
|
82 |
nifti_to_glb("prediction.nii.gz")
|
83 |
|
84 |
self.images = load_to_numpy(path)
|
|
|
|
|
|
|
85 |
|
86 |
self.pred_images = load_pred_volume_to_numpy("./prediction.nii.gz")
|
87 |
+
slider = gr.Slider(
|
88 |
+
minimum=0,
|
89 |
+
maximum=len(self.images) - 1,
|
90 |
+
value=int(len(self.images) / 2),
|
91 |
+
step=1,
|
92 |
+
label="Which 2D slice to show",
|
93 |
+
interactive=True,
|
94 |
+
)
|
95 |
+
|
96 |
+
return "./prediction.obj", slider
|
97 |
|
98 |
def get_img_pred_pair(self, k):
|
99 |
+
img = self.images[k]
|
100 |
+
img_pil = Image.fromarray(img)
|
101 |
+
seg_list = []
|
102 |
+
seg_list.append((self.pred_images[k], self.class_name))
|
103 |
+
return img_pil, seg_list
|
104 |
+
|
105 |
+
def setup_interface_inputs(self):
|
106 |
+
with gr.Row():
|
107 |
+
with gr.Column():
|
108 |
+
self.file_output = gr.File(file_count="single", elem_id="upload")
|
109 |
+
|
110 |
+
with gr.Column():
|
111 |
+
self.model_selector = gr.Dropdown(
|
112 |
+
list(self.class_names.keys()),
|
113 |
+
label="Segmentation task",
|
114 |
+
info="Select the segmentation model to run",
|
115 |
+
multiselect=False,
|
116 |
+
# size="sm",
|
117 |
+
)
|
118 |
+
|
119 |
+
with gr.Column():
|
120 |
+
with gr.Row():
|
121 |
+
self.stripped_cb = gr.Checkbox(label="Stripped inputs")
|
122 |
+
self.registered_cb = gr.Checkbox(label="Co-registered inputs")
|
123 |
+
with gr.Row():
|
124 |
+
self.run_btn = gr.Button("Run segmentation", scale=1)
|
125 |
+
|
126 |
+
def setup_interface_outputs(self):
|
127 |
+
with gr.Row():
|
128 |
+
with gr.Group():
|
129 |
+
with gr.Column():
|
130 |
+
t = gr.AnnotatedImage(
|
131 |
+
visible=True,
|
132 |
+
elem_id="model-2d",
|
133 |
+
color_map={self.class_name: "#ffae00"},
|
134 |
+
height=512,
|
135 |
+
width=512,
|
136 |
+
)
|
137 |
+
|
138 |
+
self.slider = gr.Slider(
|
139 |
+
minimum=0,
|
140 |
+
maximum=1,
|
141 |
+
value=0,
|
142 |
+
step=1,
|
143 |
+
label="Which 2D slice to show",
|
144 |
+
interactive=True,
|
145 |
+
)
|
146 |
+
|
147 |
+
self.slider.change(fn=self.get_img_pred_pair, inputs=self.slider, outputs=t)
|
148 |
+
|
149 |
+
with gr.Group():
|
150 |
+
self.volume_renderer.render()
|
151 |
+
self.download_btn = gr.DownloadButton(label="Download results", visible=False)
|
152 |
+
self.download_file = gr.File(label="Download Zip", interactive=True, visible=False)
|
153 |
+
|
154 |
+
def package_results(self):
|
155 |
+
"""Generates text files and zips them."""
|
156 |
+
output_dir = "temp_output"
|
157 |
+
os.makedirs(output_dir, exist_ok=True)
|
158 |
+
|
159 |
+
zip_filename = os.path.join(output_dir, "generated_files.zip")
|
160 |
+
with ZipFile(zip_filename, 'w') as zf:
|
161 |
+
zf.write("./prediction.nii.gz")
|
162 |
+
|
163 |
+
return zip_filename
|
164 |
|
165 |
def run(self):
|
166 |
css = """
|
|
|
176 |
}
|
177 |
"""
|
178 |
with gr.Blocks(css=css) as demo:
|
179 |
+
# Define the interface components first
|
180 |
+
self.setup_interface_inputs()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
181 |
with gr.Row():
|
182 |
gr.Examples(
|
183 |
examples=[
|
184 |
os.path.join(self.cwd, "t1gd.nii.gz"),
|
185 |
],
|
186 |
+
inputs=self.file_output,
|
187 |
+
outputs=self.file_output,
|
188 |
fn=self.upload_file,
|
189 |
cache_examples=True,
|
190 |
)
|
191 |
+
self.setup_interface_outputs()
|
192 |
+
|
193 |
+
# Define the signals/slots
|
194 |
+
self.file_output.upload(self.upload_file, self.file_output, self.file_output)
|
195 |
+
self.model_selector.input(fn=lambda x: self.set_class_name(x), inputs=self.model_selector, outputs=None)
|
196 |
+
self.run_btn.click(fn=self.process, inputs=[self.file_output, self.stripped_cb],
|
197 |
+
outputs=[self.volume_renderer, self.slider]).then(fn=lambda:
|
198 |
+
gr.DownloadButton(visible=True), inputs=None, outputs=self.download_btn)
|
199 |
+
self.download_btn.click(fn=self.package_results, inputs=[], outputs=self.download_file).then(fn=lambda
|
200 |
+
file_path: gr.File(label="Download Zip", visible=True, value=file_path), inputs=self.download_file,
|
201 |
+
outputs=self.download_file)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
202 |
|
203 |
# sharing app publicly -> share=True:
|
204 |
# https://gradio.app/sharing-your-app/
|
src/inference.py
CHANGED
@@ -2,14 +2,17 @@ import configparser
|
|
2 |
import logging
|
3 |
import os
|
4 |
import shutil
|
|
|
|
|
5 |
|
6 |
|
7 |
def run_model(
|
8 |
input_path: str,
|
9 |
model_path: str,
|
10 |
verbose: str = "info",
|
11 |
-
task: str = "
|
12 |
name: str = "Tumor",
|
|
|
13 |
):
|
14 |
logging.basicConfig()
|
15 |
logging.getLogger().setLevel(logging.WARNING)
|
@@ -55,38 +58,53 @@ def run_model(
|
|
55 |
rads_config.set("System", "input_folder", patient_directory)
|
56 |
rads_config.set("System", "output_folder", output_path)
|
57 |
rads_config.set("System", "model_folder", model_path)
|
58 |
-
rads_config.set(
|
59 |
-
|
60 |
-
"pipeline_filename",
|
61 |
-
os.path.join(model_path, task, "pipeline.json"),
|
62 |
-
)
|
63 |
rads_config.add_section("Runtime")
|
64 |
rads_config.set(
|
65 |
"Runtime", "reconstruction_method", "thresholding"
|
66 |
) # thresholding, probabilities
|
67 |
rads_config.set("Runtime", "reconstruction_order", "resample_first")
|
68 |
rads_config.set("Runtime", "use_preprocessed_data", "False")
|
|
|
69 |
|
70 |
with open("rads_config.ini", "w") as f:
|
71 |
rads_config.write(f)
|
72 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
# finally, run inference
|
74 |
from raidionicsrads.compute import run_rads
|
75 |
-
|
76 |
run_rads(config_filename="rads_config.ini")
|
77 |
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
+ ".nii.gz",
|
87 |
-
"./prediction.nii.gz",
|
88 |
-
)
|
89 |
-
|
90 |
except Exception as e:
|
91 |
print(e)
|
92 |
|
|
|
2 |
import logging
|
3 |
import os
|
4 |
import shutil
|
5 |
+
import json
|
6 |
+
import fnmatch
|
7 |
|
8 |
|
9 |
def run_model(
|
10 |
input_path: str,
|
11 |
model_path: str,
|
12 |
verbose: str = "info",
|
13 |
+
task: str = "MRI_TumorCore",
|
14 |
name: str = "Tumor",
|
15 |
+
stripped_inputs_status: bool = False,
|
16 |
):
|
17 |
logging.basicConfig()
|
18 |
logging.getLogger().setLevel(logging.WARNING)
|
|
|
58 |
rads_config.set("System", "input_folder", patient_directory)
|
59 |
rads_config.set("System", "output_folder", output_path)
|
60 |
rads_config.set("System", "model_folder", model_path)
|
61 |
+
rads_config.set('System', 'pipeline_filename', os.path.join(output_path,
|
62 |
+
'test_pipeline.json'))
|
|
|
|
|
|
|
63 |
rads_config.add_section("Runtime")
|
64 |
rads_config.set(
|
65 |
"Runtime", "reconstruction_method", "thresholding"
|
66 |
) # thresholding, probabilities
|
67 |
rads_config.set("Runtime", "reconstruction_order", "resample_first")
|
68 |
rads_config.set("Runtime", "use_preprocessed_data", "False")
|
69 |
+
rads_config.set('Runtime', 'use_stripped_data', 'True' if stripped_inputs_status else 'False')
|
70 |
|
71 |
with open("rads_config.ini", "w") as f:
|
72 |
rads_config.write(f)
|
73 |
|
74 |
+
pip = {}
|
75 |
+
step_index = 1
|
76 |
+
pip_num = str(step_index)
|
77 |
+
pip[pip_num] = {}
|
78 |
+
pip[pip_num]["task"] = "Classification"
|
79 |
+
pip[pip_num]["inputs"] = {} # Empty input means running it on all existing data for the patient
|
80 |
+
pip[pip_num]["target"] = ["MRSequence"]
|
81 |
+
pip[pip_num]["model"] = "MRI_SequenceClassifier"
|
82 |
+
pip[pip_num]["description"] = "Classification of the MRI sequence type for all input scans."
|
83 |
+
|
84 |
+
step_index = step_index + 1
|
85 |
+
pip_num = str(step_index)
|
86 |
+
pip[pip_num] = {}
|
87 |
+
pip[pip_num]["task"] = 'Model selection'
|
88 |
+
pip[pip_num]["model"] = task
|
89 |
+
pip[pip_num]["timestamp"] = 0
|
90 |
+
pip[pip_num]["format"] = "thresholding"
|
91 |
+
pip[pip_num]["description"] = f"Identifying the best {task} segmentation model for existing inputs"
|
92 |
+
|
93 |
+
with open(os.path.join(output_path, 'test_pipeline.json'), 'w', newline='\n') as outfile:
|
94 |
+
json.dump(pip, outfile, indent=4, sort_keys=True)
|
95 |
+
|
96 |
# finally, run inference
|
97 |
from raidionicsrads.compute import run_rads
|
|
|
98 |
run_rads(config_filename="rads_config.ini")
|
99 |
|
100 |
+
logging.info(f"Looking for the following pattern: {task}")
|
101 |
+
patterns = ["*_" + task + '.*', "*_" + name + '.*']
|
102 |
+
existing_files = os.listdir(os.path.join(output_path, "T0"))
|
103 |
+
logging.info(f"Existing files: {existing_files}")
|
104 |
+
fileName = str(os.path.join(output_path, "T0",
|
105 |
+
[x for x in existing_files if
|
106 |
+
any(fnmatch.fnmatch(x, pattern) for pattern in patterns)][0]))
|
107 |
+
os.rename(src=fileName, dst="./prediction.nii.gz")
|
|
|
|
|
|
|
|
|
108 |
except Exception as e:
|
109 |
print(e)
|
110 |
|