Spaces:
Sleeping
Sleeping
File size: 9,909 Bytes
b0f82f7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 |
## Daniel Buscombe, Marda Science LLC 2023
# This file contains many functions originally from Doodleverse https://github.com/Doodleverse programs
import gradio as gr
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
from skimage.transform import resize
from skimage.io import imsave, imread
from skimage.filters import threshold_otsu
# from skimage.measure import EllipseModel, CircleModel, ransac
from glob import glob
import json
from transformers import TFSegformerForSemanticSegmentation
##========================================================
def segformer(
id2label,
num_classes=2,
):
"""
https://keras.io/examples/vision/segformer/
https://huggingface.co/nvidia/mit-b0
"""
label2id = {label: id for id, label in id2label.items()}
model_checkpoint = "nvidia/mit-b0"
model = TFSegformerForSemanticSegmentation.from_pretrained(
model_checkpoint,
num_labels=num_classes,
id2label=id2label,
label2id=label2id,
ignore_mismatched_sizes=True,
)
return model
##========================================================
def fromhex(n):
"""hexadecimal to integer"""
return int(n, base=16)
##========================================================
def label_to_colors(
img,
mask,
alpha, # =128,
colormap, # =class_label_colormap, #px.colors.qualitative.G10,
color_class_offset, # =0,
do_alpha, # =True
):
"""
Take MxN matrix containing integers representing labels and return an MxNx4
matrix where each label has been replaced by a color looked up in colormap.
colormap entries must be strings like plotly.express style colormaps.
alpha is the value of the 4th channel
color_class_offset allows adding a value to the color class index to force
use of a particular range of colors in the colormap. This is useful for
example if 0 means 'no class' but we want the color of class 1 to be
colormap[0].
"""
colormap = [
tuple([fromhex(h[s : s + 2]) for s in range(0, len(h), 2)])
for h in [c.replace("#", "") for c in colormap]
]
cimg = np.zeros(img.shape[:2] + (3,), dtype="uint8")
minc = np.min(img)
maxc = np.max(img)
for c in range(minc, maxc + 1):
cimg[img == c] = colormap[(c + color_class_offset) % len(colormap)]
cimg[mask == 1] = (0, 0, 0)
if do_alpha is True:
return np.concatenate(
(cimg, alpha * np.ones(img.shape[:2] + (1,), dtype="uint8")), axis=2
)
else:
return cimg
##====================================
def standardize(img):
# standardization using adjusted standard deviation
N = np.shape(img)[0] * np.shape(img)[1]
s = np.maximum(np.std(img), 1.0 / np.sqrt(N))
m = np.mean(img)
img = (img - m) / s
del m, s, N
#
if np.ndim(img) == 2:
img = np.dstack((img, img, img))
return img
############################################################
############################################################
#load model
filepath = './weights/ct_NAIP_8class_768_segformer_v3_fullmodel.h5'
configfile = filepath.replace('_fullmodel.h5','.json')
with open(configfile) as f:
config = json.load(f)
# This is how the program is able to use variables that have never been explicitly defined
for k in config.keys():
exec(k+'=config["'+k+'"]')
id2label = {}
for k in range(NCLASSES):
id2label[k]=str(k)
model = segformer(id2label,num_classes=NCLASSES)
# model.compile(optimizer='adam')
model.load_weights(filepath)
############################################################
############################################################
# #-----------------------------------
def est_label_multiclass(image,Mc,MODEL,TESTTIMEAUG,NCLASSES,TARGET_SIZE):
est_label = np.zeros((TARGET_SIZE[0], TARGET_SIZE[1], NCLASSES))
for counter, model in enumerate(Mc):
# heatmap = make_gradcam_heatmap(tf.expand_dims(image, 0) , model)
try:
if MODEL=='segformer':
est_label = model(tf.expand_dims(image, 0)).logits
else:
est_label = tf.squeeze(model(tf.expand_dims(image, 0)))
except:
if MODEL=='segformer':
est_label = model(tf.expand_dims(image[:,:,0], 0)).logits
else:
est_label = tf.squeeze(model(tf.expand_dims(image[:,:,0], 0)))
if TESTTIMEAUG == True:
# return the flipped prediction
if MODEL=='segformer':
est_label2 = np.flipud(
model(tf.expand_dims(np.flipud(image), 0)).logits
)
else:
est_label2 = np.flipud(
tf.squeeze(model(tf.expand_dims(np.flipud(image), 0)))
)
if MODEL=='segformer':
est_label3 = np.fliplr(
model(
tf.expand_dims(np.fliplr(image), 0)).logits
)
else:
est_label3 = np.fliplr(
tf.squeeze(model(tf.expand_dims(np.fliplr(image), 0)))
)
if MODEL=='segformer':
est_label4 = np.flipud(
np.fliplr(
tf.squeeze(model(tf.expand_dims(np.flipud(np.fliplr(image)), 0)).logits))
)
else:
est_label4 = np.flipud(
np.fliplr(
tf.squeeze(model(
tf.expand_dims(np.flipud(np.fliplr(image)), 0)))
))
# soft voting - sum the softmax scores to return the new TTA estimated softmax scores
est_label = est_label + est_label2 + est_label3 + est_label4
return est_label, counter
# #-----------------------------------
def seg_file2tensor_3band(bigimage, TARGET_SIZE):
"""
"seg_file2tensor(f)"
This function reads a jpeg image from file into a cropped and resized tensor,
for use in prediction with a trained segmentation model
INPUTS:
* f [string] file name of jpeg
OPTIONAL INPUTS: None
OUTPUTS:
* image [tensor array]: unstandardized image
GLOBAL INPUTS: TARGET_SIZE
"""
smallimage = resize(
bigimage, (TARGET_SIZE[0], TARGET_SIZE[1]), preserve_range=True, clip=True
)
smallimage = np.array(smallimage)
smallimage = tf.cast(smallimage, tf.uint8)
w = tf.shape(bigimage)[0]
h = tf.shape(bigimage)[1]
return smallimage, w, h, bigimage
# #-----------------------------------
def get_image(f,N_DATA_BANDS,TARGET_SIZE,MODEL):
image, w, h, bigimage = seg_file2tensor_3band(f, TARGET_SIZE)
image = standardize(image.numpy()).squeeze()
if MODEL=='segformer':
if np.ndim(image)==2:
image = np.dstack((image, image, image))
image = tf.transpose(image, (2, 0, 1))
return image, w, h, bigimage
# #-----------------------------------
#segmentation
def segment(input_img, use_tta, use_otsu, dims=(768, 768)):
if use_otsu:
print("Use Otsu threshold")
else:
print("No Otsu threshold")
if use_tta:
print("Use TTA")
else:
print("Do not use TTA")
image, w, h, bigimage = get_image(input_img,N_DATA_BANDS,TARGET_SIZE,MODEL)
est_label, counter = est_label_multiclass(image,[model],'segformer',TESTTIMEAUG,NCLASSES,TARGET_SIZE)
print(est_label.shape)
est_label /= counter + 1
# est_label cannot be float16 so convert to float32
est_label = est_label.numpy().astype('float32')
est_label = resize(est_label, (1, NCLASSES, TARGET_SIZE[0],TARGET_SIZE[1]), preserve_range=True, clip=True).squeeze()
est_label = np.transpose(est_label, (1,2,0))
est_label = resize(est_label, (w, h))
est_label = np.argmax(est_label,-1)
print(est_label.shape)
imsave("greyscale_download_me.png", est_label.astype('uint8'))
class_label_colormap = [
"#3366CC",
"#DC3912",
"#FF9900",
"#109618",
"#990099",
"#0099C6",
"#DD4477",
"#66AA00",
"#B82E2E",
"#316395",
]
# add classes
class_label_colormap = class_label_colormap[:NCLASSES]
color_label = label_to_colors(
est_label,
input_img[:, :, 0] == 0,
alpha=128,
colormap=class_label_colormap,
color_class_offset=0,
do_alpha=False,
)
imsave("color_download_me.png", color_label)
return color_label,"greyscale_download_me.png", "color_download_me.png"
title = "Mapping sand in high-res. imagery"
description = "This simple model demonstration segments NAIP RGB (visible spectrum) imagery into the following classes:1. water (unbroken water); 2. whitewater (surf, active wave breaking); 3. sediment (natural deposits of sand. gravel, mud, etc), 4. other_bare_natural_terrain, 5. marsh_vegetation, 6. terrestrial_vegetation, 7. agricultural, 8. development. Please note that, ordinarily, ensemble models are used in predictive mode. Here, we are using just one model, i.e. without ensembling. Allows upload of 3-band imagery in jpg format and download of label imagery only one at a time. "
examples= [[l] for l in glob('examples/*.jpg')]
inp = gr.Image()
out1 = gr.Image(type='numpy')
# out2 = gr.Plot(type='matplotlib')
out3 = gr.File()
out4 = gr.File()
inp2 = gr.inputs.Checkbox(default=False, label="Use TTA")
inp3 = gr.inputs.Checkbox(default=False, label="Use Otsu")
Segapp = gr.Interface(segment, [inp, inp2, inp3],
[out1, out3, out4], #out2
title = title, description = description, examples=examples,
theme="grass")
Segapp.launch(enable_queue=True) |