Spaces:
Sleeping
Sleeping
File size: 77,770 Bytes
4533ee3 724934a 4533ee3 724934a 4533ee3 724934a 4533ee3 e42055e 4533ee3 724934a 4533ee3 e42055e 4533ee3 e42055e 4533ee3 e42055e 4533ee3 724934a 4533ee3 724934a 4533ee3 e42055e 4533ee3 724934a e42055e 4533ee3 e42055e 4533ee3 724934a e42055e 4533ee3 724934a e42055e 4533ee3 724934a e42055e 4533ee3 e42055e 4533ee3 e42055e 4533ee3 e42055e 4533ee3 724934a 4533ee3 e42055e 4533ee3 e42055e 4533ee3 724934a 4533ee3 e42055e 4533ee3 724934a 4533ee3 e42055e 4533ee3 e42055e 4533ee3 724934a 4533ee3 e42055e 4533ee3 e42055e 4533ee3 724934a 4533ee3 e42055e 4533ee3 724934a 4533ee3 724934a e42055e 724934a 4533ee3 724934a 4533ee3 724934a 4533ee3 724934a 4533ee3 724934a 4533ee3 724934a 4533ee3 724934a 4533ee3 724934a 4533ee3 724934a 4533ee3 724934a 4533ee3 724934a 4533ee3 724934a 4533ee3 724934a 4533ee3 724934a 4533ee3 724934a 4533ee3 724934a 4533ee3 724934a 4533ee3 724934a 4533ee3 724934a e42055e 724934a e42055e 724934a 4533ee3 724934a 4533ee3 e42055e 4533ee3 724934a 4533ee3 724934a e42055e 724934a 4533ee3 724934a 4533ee3 724934a 4533ee3 724934a 4533ee3 724934a 4533ee3 724934a 4533ee3 724934a 4533ee3 e42055e 724934a 4533ee3 724934a 4533ee3 724934a 4533ee3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 |
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Minerva: AI Guardian for Scam Protection"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This notebook implements a multi-agent system for analyzing images (screenshots) to identify scam attempts, and provide personalized scam prevention. It uses [AutoGen](https://github.com/microsoft/autogen/) to orchestrate various specialized agents that work together.\n",
"\n",
"Benefits:\n",
"- Automates the process of identifying suspicious scam patterns.\n",
"- Prevent Financial Loss\n",
"- Save Time: Early scam detection reduces the number of claims filed by end-users."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Install Dependencies"
]
},
{
"cell_type": "code",
"execution_count": 103,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Note: you may need to restart the kernel to use updated packages.\n"
]
}
],
"source": [
"%pip install -q autogen-agentchat~=0.2 pillow pytesseract pyyaml"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import autogen\n",
"\n",
"from IPython.display import Image as IPImage\n",
"from IPython.display import display"
]
},
{
"cell_type": "code",
"execution_count": 106,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"from dotenv import load_dotenv, find_dotenv\n",
"\n",
"load_dotenv(find_dotenv())\n",
"\n",
"config_list = [\n",
" {\n",
" \"model\": \"gpt-4o-mini\",\n",
" \"api_key\": os.getenv(\"OPENAI_API_KEY\")\n",
" }\n",
"]\n",
"\n",
"llm_config = {\n",
" \"config_list\": config_list,\n",
" \"timeout\": 120,\n",
"}"
]
},
{
"cell_type": "code",
"execution_count": 107,
"metadata": {},
"outputs": [],
"source": [
"import yaml\n",
"\n",
"with open('config/agents.yaml', 'r') as file:\n",
" config = yaml.safe_load(file)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Agents Creation"
]
},
{
"cell_type": "code",
"execution_count": 108,
"metadata": {},
"outputs": [],
"source": [
"def create_agents():\n",
"\n",
" ocr_agent = autogen.AssistantAgent(\n",
" name=\"OCR_Specialist\",\n",
" system_message=config['ocr_agent']['assignment'],\n",
" llm_config=llm_config\n",
" )\n",
" \n",
" content_agent = autogen.AssistantAgent(\n",
" name=\"Content_Analyst\",\n",
" system_message=config['content_agent']['assignment'],\n",
" llm_config=llm_config\n",
" )\n",
"\n",
" decision_agent = autogen.AssistantAgent(\n",
" name=\"Decision_Maker\",\n",
" system_message=config['decision_agent']['assignment'],\n",
" llm_config=llm_config\n",
" )\n",
"\n",
" summary_agent = autogen.AssistantAgent(\n",
" name=\"Summary_Agent\",\n",
" system_message=config['summary_agent']['assignment'],\n",
" llm_config=llm_config\n",
" )\n",
"\n",
" user_proxy = autogen.UserProxyAgent(\n",
" name=\"user_proxy\",\n",
" is_termination_msg=lambda x: \"TASK_COMPLETE\" in x.get(\"content\", \"\"),\n",
" human_input_mode=\"NEVER\",\n",
" max_consecutive_auto_reply=10,\n",
" )\n",
"\n",
" @user_proxy.register_for_execution()\n",
" @ocr_agent.register_for_llm(description=\"Extracts text from an image path\")\n",
" def ocr(image_path: str) -> str:\n",
" from PIL import Image\n",
" import pytesseract\n",
"\n",
" try:\n",
" image = Image.open(image_path)\n",
" text = pytesseract.image_to_string(image)\n",
" return text\n",
" except Exception as e:\n",
" return f\"Error in text extraction: {str(e)}\"\n",
" \n",
" return ocr_agent, content_agent, decision_agent, user_proxy "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Workflow"
]
},
{
"cell_type": "code",
"execution_count": 109,
"metadata": {},
"outputs": [],
"source": [
"class ScamDetectionWorkflow:\n",
" def __init__(self):\n",
" self.ocr_agent, self.content_agent, self.decision_agent, self.user_proxy = create_agents()\n",
" \n",
" def analyze(self, image_path):\n",
" \"\"\"Coordinate the multi-agent analysis.\n",
" \"\"\"\n",
" image_path = \"./samples/02.giftcard.message.scam.png\"\n",
" \n",
" groupchat = autogen.GroupChat(\n",
" agents=[self.ocr_agent, self.content_agent, self.decision_agent, self.user_proxy],\n",
" messages=[],\n",
" max_round=15,\n",
" )\n",
" manager = autogen.GroupChatManager(groupchat=groupchat)\n",
"\n",
" # Start the collaborative analysis\n",
" messages = self.user_proxy.initiate_chat(\n",
" manager,\n",
" message=f\"\"\"\n",
" 1. OCR Agent: Extract text from this image: {image_path}\n",
" 2. Content Agent: Evaluate the messaging and claims\n",
" 3. Decision Maker: Synthesize all analyses and make final determination\"\"\",\n",
" )\n",
"\n",
" return messages"
]
},
{
"cell_type": "code",
"execution_count": 110,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAATgAAACsCAYAAADv/7CLAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAKvqSURBVHhe7V0FgJTV972z3bt0d3cjCqKCYKESit0tBurP9m93B3YDIiAIKgjS3d3dsMSy3TM7+z/nvvl2ZmdnYWEXRJ2zPGbmi/fuq/PufWnLB8QPP/zw41+IANenH3744ce/Dn6C88MPP/618BOcH3748a+Fn+D88MOPfy38BOeHH378a+EnOD/88ONfi9M2TcQ/F8UPP/5bsLk+/06cNoJzuj798MOP/wZIcH83yZ0hJqpfv/PDDz/KHqdFg6P2lo8/G/nc6RS7wy5Z2dmSk2MXB777Cc4PP/59UO0NVdtms0lQUJCEh4frJ11gYKBeP9U4bQTHmObk5kpyUpLkgeQYrA0KpM3mJzc//Pg3wrtqs85b5BYaGiqRkZESEHBqjchTRnD0lPzMz1xoaZlZWZKZkekiNgvWExa8RTn1DO+HH36cOhSQHLQ1amx0ygH4DAsLg1YXJsHBwRLA63zMPF1mOGUER62Nwjry8iQpKVFyHHl6ndeKV9o8hyL0SfPVDz/8+EfDZiuqqYHT9HpUVKSarwH87bpXVjil+mGu3S5JyUmSk5PruuKHH374YUDVyul0SmpqmuTmgiNOgap1Sggu35mvgmdmZkDwHJHAYng531fwvEbn19788OO/AHJFWloa+K3sGe7UaHDgJo6UZmRk4OvxiMpPZH748V+H3e6QtPQM16+ywykhuDz2uyUmeY2QkJ09HeH5nfCTnR9+/NfAAQdOF0sHwTkcDtfVssEpITgK6chz6GiJGxaZWc6JmHneJ/wE54cf/0Vw+gh5ISsrS3mjrMY+TwnBZWdnu7754YcffpQc5A6SW1lNAi5zgqNw1OACbZzE63aBCIruuH1yHHhQ59fm/PDjvwAzP87wRC4svzxqcK57pcUpM1FtxcxQ9tOWH374URzKmh9KTXBWj5rlCC7FsqBcrPa0cca0ZjSKi4r1bMlgqbLGZvfl/CgLWOmsH/q1bNPa6ncx5cP9249/CzzLybEc/nfle9E7J44yJzhSm9MljgoKZ3MVVneBLaglRcGBB8sdA05nHiob/cxDaE7Xd65xNa6wVH6UBjZOMWcqI83p8nQAyTuNS5fWJFCn07zPieH8zmuFy40f/1RY+Xg8xzlx+nwx7kRxSkxUwl0BTg24fi0pKVmOJCSI3W7XqSlIHz9OBZCw2dlZMnvObFmxYoUSj6XRlSWCggJl7949Mnr0aA0nL88Udj/+OyjrclXqtajeRZDeHYg/oItnPWHzWLVwYuMHVmXK1wKfk5MtY8eOlU8/HSIpqSnKobzdvXt3+b/nn5fKlSqB/EJcBEvw3RMK8F8BSwOy0q40oBf79u2TvldeIS1btZIhQ4ZIVFS0664njp3WnBfJFpoycd4Td5Uwcpr7DkeePPbYozJ50mRp0aKF/DRihISFheq9si74pQVrDfuahw8fJhs3bkT5O08uu+zSM07Ofx6cUqlSZde0kcI4dunyjVOmwXmDpGa5EwULDclt48YNMnDgQHkRRMalHbVr1ZKGDRvoQt0ZM2bIJRdfLF988YVkZJb9jOgTAwnF0x0LJX225M9RE5oyZbI88sjDMmvWLG10iqLk/tE50WDk5nL/Pge+F/f8sf2z23OV2L77/lsZPPhh2YD89HyW+dylSxeQWog0atwIFzz983R/PyhrYGCAapq/osE9dOiQ644fZxLKnOCUv8q0DNI8ypbt27fJLbfcKuvWrpWzu3aVPyb8IWNQsEb8PFJmzZ4tTzzxJLTGAPnw/Q9lzJgxqhm4pPEJWPz6Z/0qe9BPyxUH9zOeDb/FH97aQHFmv0Vg5hOarjNPNm3aKH/89pvs379f/Svqp3nWuOLgSiO8w/esV721cwtW+NoLawVYgHzV4NiVsGL5Mvnjjz/kaMKRQs8FBNjkqquvkqXLlssrr7wiwa7Jn0WdgTv/SovC/hoc228mQWBgEEoYGl9onmGhRtP048xCqQmOHng6Fv0Ar6tOEE9pwEox5JMhknD4sFzYqxe0tC+lXt36EhUZDRclkRFRctttt8u7770vIShob7/1ruzYsVO1PlOBSAwc+uBuwtAi8uy6CQC1CacTGgkIwXrG7ai1mE51M+PFiedzQR7sYOdvX3C9h3dICJSbHeaGDwwpkHjZ8jNcEhblo0bEaTWcB8T77FOkKadyqRZDs85UOWpQ9JegRmV1ygYGskOeAwB5kp2VreEbMeE/rllEYg3K8Le5ZpMAyGPNQ6LTe3iGgwnqD8JQ5/EOw+VXJV3IlpObLbl2pCne4S4yjAPvUR4TzzzIm433HK57Jt4E40wXEBAoQZAlKDhQgkOCJBCaKGE9y9F5Ooaj+Yj8Y37QmbQv7DSuzEOmC57hQJTJG9zFb6aZyU8+a54PwDU6rqWmHwVhoMxY/pr8pOz47YqDH2ULJnFhFjHXThRlvh8cvTtw4CAkcovj9JCMX7XOngCSk5Plot69UXmcMmrUKJilDXG1qCes8K+88rJMmjRJnnzySTVntQKyuqJirFy1SpYsXizz5s2TxMQkqVCxglzYs6f0799foqOjtTITrEQ0Pf6aPFn69eunO4/++uuvMmvmLC34rVu3lb59+0nnzp1QSUwlNGAfYa6sWbNK5dyyZauGe+6557rCiFFybtmqhfS98kolOpLIJ598pjuvXHvddbJs6VIZP368ZGXmyJDPPpFaMMOJhITDMn36TJk3d57s2rUT4eRI61at5PIr+knHjh0kIiJM997bsGGt/P7bBFmwYIGsX7sO2u450qBBAwkNCZOHHn5I4srFyebNm2Xkzz9Jt3PPk/POO093V3UWdOgHyLRpUxHOHLnm2mukcZOGIJ4g2btnn/S57DJp1bqVfPXVVxIeHoH0YrFzysGDB2XK1L9k5oxZsv/AAfXvrLPOkl5ojDp17KTExefmzJkjM2ZMl5kzZ8qObTvk4ksvkRo1akr9+vXkmmuuhWkaIXv37ZYff/hBzurC9y9UclapkFbJyamyZMliGfPLWKTBLpBgiLRv317LRrt27ZAGkXjSlAuWQ8qZkJAgDzz4oMyfP19+Q7ru2bNHYmNiEfducu2110rFipX0Hasa8P81q9fI5MmTZPGSJZKeno7GtK5cfNHF0vPCnhIbG1dQTogHBz2o2uirr70m199wfaF7fpwMTB8ctfeySMnAFwHX9zJDWlo6WMwtHvvdAlByeOVkhP7rr79k/Ljx0qxZU7nzrju1EPkqSDSBOnbsqGTSvHkLVLQQneJAMuD7jz76iCE3bpsOTWgntDz2Uf02/jfp1KmTVKhQAVoDzCIUdlZGdqazs/u5556TuXPmusj7gJrJJFFWrurVq6ssqoVAA/jxhx/l2WeekbVr1kpGZiYIzCmLFy3UPsKWLVvJi8+/oBXz4osvUnKkOfnU08/I/HnzZQfM8GHDhithZKBiXQ2CjomJ0e8PPviADP1hKGTerjImIQ5rEAblYEd8W1RwdswuBUEO+XgI/Dgk+Yj7ofh42Qqi3b59h9x4400ggXAl79dff01q1qghXc4+25UnrNpmFQrJ/Ltvv5Hzzz9f6tWrp6Z/SkqqjBgxQqpUqSKXX365jmIzPfYf2C833HCj/PnHRIlHWIxbPNJo+fLlaCD+kmpIn6ZNm+uzf/01WX74/gdJSk4Up8Mp8QfjZePGTZKTnSWX9emjg0Nbt26R5//veW18zjuvO6lH45uSkiL33HO3fP/t97Jn9x7VFLmhw2o0Wn9O+lMOQbsnqVIujQ3Ce/XVV2XGtOlSpXIVeeGF5+XIkQTkfSLIeo8sWrhQZiOP2YCxoWEeUtucjLI2+OHBmo40xSuULy+rEAYbO8bpggt6aJ5YmvO06dNlE+LQq3cv5G9Ln+XSj5KDU8qoUAQas6nUKBtfTjGmoxCBPqQDtAFW4uIKEa+z8NVAxY2JMaN83Jtu69at8vbbb6lm8X+oPCTMmSC2v6b8JQMGDJAjCUfkPZi3pF8W6gAQD6s7K/tHH32kGti438bL1OnTZC4I8r77B0lqaqo89tj/oFWkmPeQIZs3bZJPQYrcivn5l57Xwk9t6Lfff5e2bdvK448/Dj8tk43SGTBMbvi3d/9+efGlF2UStIc/UaFInqxIEydOlCULl6ByXSCTp0zRSrgAFXTIZ5+KA+bel19+IYfZyQ1PL7roIlkELeeuu+9S4vo/EOqipUtkETTX8qis1l597DeyTPjCgwau+6jsJO1jNUl87rNPP5NDIOTrb7xeJk6aqLKyT/SZZ55Vs/aLz79QMiZR3XrrrTJvwTzpAZKgSf7JJ5/IsuXL5NvvvjNaJMie8WHjkwtNmDIwXdkH+/FHH8vyZcvlbBDyiJE/yzxoZHPnz5Mvv/pSqiO/fxk1WtOa7xCMF7/n2nPlx6E/ymvQsKYj/6jZDhv+EzTTJrJpw0b5DflqxT8FefrJxx9rmO+88y7yYbJ89/33MvHPP+WCHj1kLRq233//TRtMC6yMLI4x0M79KBuUZRNxigjOs8KUHtQe2JnbvHlz15WSg/09E2BCHDlyRK66+mo1I6pWqSrhIKFatWvLs9DO6tSpIwtAXCz8rBhWnxPNNhb2F154EVpIU2g/EVIOJPEwWni+k3D4EEye3QjFaD5jx/4qqWmpMO2uhbZ0o5QrV07foUn9/PPPS0RkBNnMCGalEdRbhsn+pqeeegqm2jUw2RpItWrVVTOjltcTZvSESRPkLZA0R45jQeIR4eFqXvft11fS09JkIQiPmk5wcJASLEeW2RXAyhcVFaUEwjCt/kGWIteH+X2CYLrQ9LznnntkwsQJ8vTTT8OUq6dxLg83cODVIJHGSPfDchjaFRGOtAiFhkdzk2QcAXIICw3TRosDDKYP0Mhi/Od0kjztouDUkUqVK8lLr7yk5iiJJTY2Vs6DlvkMNGaO0L7x5puFNnpgujKZb7jhBrniiiskNi5O3zn77C6ah0HQ8JnnlhmcmZEhB9FQ0GQ+t/u5CCNKoqOiNc3feOMNNCRfyTnnnFNoCoOGAXCU2Y8zD6UmOGartzO+uq8EnFDmu9+zXF5ertbEwCAWfut6ycCN9CZMmITKbpP+/QZAOyBpUQtEpYLjQMX1198ktsAgPPcnCiyFZ58RK1iQdO16Lq6xox2X8BkEwrHZnDBP2+GTs+7ZoU8mccpsaIXcZKAbND6bLdA1CmgqazRI6fbbb8cvI7sSKesf6wfCDEJYjRo2xrM0/Qz5sHIyvIqVKilJxsbFaAd4dk6WVnySAU1OfnKbGWpl3rsk03uCneou7tDnoXPi0xCKRSoGDNx6C0CcNfG9QC00ICBf6oEM6sKMDQFRUSY2KPSXgz0kCGpkTC8TX/rL8JC+JC/cM32kBjbtx0BY/EfZhP0wgbJl81Y5GH9QWrVsI7Vq1WHgquWxEaJk53brJk2aNpOko4mydds24xnAdA8GibH7gXG0Gi7KUa1aNZBtuGRn5eC3kSk4OBTlIUY2rN+g/XyJ8I/XqQkyD849F+FA89PBHxc06ZBenNrix5mHUhPc6UBIiNE+jiYkmAsnAFb8BGgRNhAFO9utPhoL/N25c2et1ytXrnSN8JlKwIts8TmvzA0XIbBge4DXOME5GFoXw/Fs5WmO0Qzt7KpoxcHcMxN0rQBoPlHDiIffEydMUDOXI8Z9+16pfWQ///yzVkBOWdBIKNzvE6QzNzy/nzwss47mGgctvvriS3n0scfktltv0wmv53btBjN6gRIZTX72qdBZ30k+hQdofIP9Y3v37UP+BUiNmjWKTb9GaABoBrP/zwJNcD7NPPRGCDTJEOS91VAQ7IO95hoOTOXL22+/rQMwHKgaPny4rFu7rpB26Mc/A6eN4Nh5SOeuhCVHq1attNCt37BBRwr5nYXSl2O/EVt/9g/RZWejhaYn+K5VHc94gy0ypwg4oBXQxCswleBIeEXho5JBJmpQloZg9QURRouBbLjOe5TLkledmq2efrq/M3z2N109YKA88cRT0BLn6MgeTcF27dpLvXr14Ye1QqCoVqaf/OdxnTIQ2h+IT09ZLTImAelvlz/eUeZPptc333wjN994k3z08UeydMkSPUGtWtVq0v287trnx+dMuIXlogyWHMcCH0mBiYo3YfqW1wuWPzSR6S/BOHj76QpK4Q7bOL7HJ62pKAQbpXvuuVeGDvtJ7rvvPqlZo6asWb1SXn/1Nbnu2mt0NJaDTFY4dI0bN5YOaLiqVKnq8sWPMwmnUYNjcTp+gfaF3hf11sI3f+48SUtNdVU+d2G1HCssJwRPmTJF9u3br9fi4mK134chJyQcUZPVqmQEW3mdhY4HOCWjCPm4XFEUvkZiZWc369d+aBys/BYoLysgR1/5gGclLAxT8TzBkUL2MVFG9nOx4/vnn0fKl199pX1y7BOiKKbCkVzdjtCwCoJzy8zrjBaveGq17Hdko8A72i+mzmhcfN58Qkb84JkbP3z3vfY/vffeezJt2nQZAY3yiy+/kBdeeEG1Kj6nsumfSx7XZ+HBjeJRk1NlELZZ+UCJjeNIKiPHtOfpbZSNg0wWtJwg/ML5Z73vuu8hAn+z/7Jz547yIMhs/G/jZOKfk+TpZ5+FdldRZkybBkL/1hUH4zjVZPiwYdKsWTOvcPw4WZSsVJQMhWvTKQS7cuhOBg3q15eWrVvLYZiaM2bMNFqcVzKw0HFBOKcGPPTQg7JmzWotsCyLHH1lQV+yZCk/CmksfO+3335X3zhKyULK+zrCCM2OnyROTyjpub5bCA4Jlq7duoodJtuEiRMLm194nkvLOO3EiM23S5YYO3bskMMHD0qLFi21MsXFxZlBhDCeIxkgmzZv0ufcnfQup5Ub1ymraogGKrvLcVoHCd1TS2Xct2zZrNc5H5DmseWUlJAenNpCLFm6VE1ndvrTXA4LD5PIiAidKmIHwXOPfc0AAp9833L8zTD0uwvuVMH//OeSu1nTppqXnN6RmZmp14hAaHC8zrlunMrB79SoSgqrK8KSgURJkzsjIx1+iQ7yNG7SSG659RZ56523dZ7dmtWrcN8tA7sv+DaS048ygPIEP83PUqPUBEcPvJ33RF7Pib7HR1Efg4PDZED/q8SR65AXnn9B/vhjIsjHFExWEs42P3r0qHBK39w5c6RO7To6X4mVNTIqQvoP6MuuIPnqq8/laGKCFt48p1nFMGPmNJk5Y5pUq1ZV+lx+qQrPTnHt8EYy85Od6daseOPwW/88KgnkuLxPHwmLCJfff/tNpk2dpqf5s9IdBJF8+umnksM+HM3AkmYhNZI4yBAMuY+icmfpoAPD4oTjuXPn6HwuJR88TVPbmNtGC2W93blzl6YRyYL3OIJJEqBcS2BSsv8sOCjYaFN4hyOiC+Yv0BFZQ+OGDFVwOvxT0sSvZk2bqT+7d+9WbY5gHxvl4URndikgYJM+cMwP+hXGEV587t61GzKZcOkPnzF9lyY9SaZ8jtNlOrTvINu2bpUxY37h4wVx4nSdN15/XTJBOjfffLMxi/EAnZMFD04HiVzOEwyPYVEG/q1du0p69jxfnoKmnJWVrXHJYRcHnjty+LCWs7hy5bT/jvfY0HIyMbW9CRNQJtU/P8oCTEnaIJ7uZFKXDHJa4CprJ6XFsUBfffVAuW/QICWNRwcPlmuvuUa+/fZbaF+/yZtvvglCO1/GjhmrfVMffPiBTouwtKiePXroLPS1q9dIN5h0zz//f7oo/+677pK77rhDctFqc/pIOWhHrLpaQfRN6/N4sIGEQ6RT587ad0PN5Z6775IO7drrvK0enOYxYYIMfuQR1/MlBzcT6Natm+zbu0/OP6+7aoFca3sH5B50//06742kQELwRIvmzUHuUfLt11/LY48+Ku+8/baSAcmpdu3acnaXLmr23nrbbfLa66/Jl0iP++69T1595RWdtOpUE9sUKe96y5+8RnOQ2vG2LVvl/vsHyS+//CJffP65XHfd9Qj3G6lRo7oOEjAflDARNsm0BzTlQJjFb775hubFTz/9JFkgfxIGHQMgGaoJigwIhcb6wIMPaDxf+L/n5aqrrtL5bx9//DHy7QZdl9yqVUudskLiKQncZGSWzjGfOSmZAxK/jx8v991/j4wf/6usXLVCXnrxJXnggQeUhPv3H6Bli+8nHEmQH38cKlMmT5b/Qzz8BFd6KEfgs6xS8pSsZGAnuCczkNR0JgW+G8rwuFkCsGCxcnDlQN06dWXP3r2yYcN6WbBgITSlqTBPVmol4kLtJ558CoW9tZoObOXJ/bxHEyoqOka2bd8my2CqLl60SPce69Cxozzz3LNy+RVXaMvMmsuwuAXO4sWLpV2H9trPpVqL5aA5cAXErt27pG+/flK3bl0lGMatfYcOuuIiKjpaKyjnzfW68EId/WRFHfvLGGmC+5dcconKxUoxauQoyQbJckUATVBP0Nzs3v1cXVq2ft06NQtnwkynrI8//oSS2MoVK3XEjzPpCVbyypUrS0R4hMq4Zs0apNcGJQNO36AWSLOSpt2mTZuMv9DmOEhC7SUGlXzZsmVyyaWX6nw/xpkm9rixv0rVqlXlssu46iBI05grPXR1x/p1OiF78SIzofiNt95UAqUZzPmHjJeZV2hTPxKOHNEtmNZCNpqdV1x5pRIYR8p///0PaduurZzXvTtTQNOJ0zo6du4kaelpGl/OX+OyttTkZOnfr7/OZ6yKZ/isBfqTnJwkN99yi84FJKAr6v9JeO+P33/XftPLLr0M7wXo3EjuZsK0XrxgkUyZMlXGjx2nZY1l6sWXXkI5Oq9A22RcFqEcHTp0GGXkbLniiis1rfwoDfIlqpiVDCfOHHgeGVWmzQ69Y6H21NTIymrxKU5GTANKysKVjkLOSstlPpwGUr16NdWUypUrrx3mhjiMRmM+TeA0w7JQmbiygbPra9asqXO4qFUQVtlk3xMJi6sL2JfFgm9kNuRHGWiS8Tn2hxmzyowq0qQJQuXX33a7PkuZaAYtXrJYroUm2rd/P3n//feVpEjCOTlc8F/YL0+wj4yOhMS1lCEhwSCz5trXxTCtLLR2tFDzif1qkJVTG0g0XGtbsWJFlYdzyBgvph1NLxIN5+nVr1dfJwgzzRh3aiocqeRII8OnpkvC5XXPesx+K5LcXjQ8DIMju0wDxonmKqf5qJZZkCfGXOW63eSUZImMiFRtkOYz/WJYfJ6TmU3cYF668pBycdI2zX760bBhIyUvkq1FLtZndjZHrznVJEgJjOC8OoLpxgX7vM/8IVkxDDZSNEW53JCNYVZmlk77KVe+nA5WeRIoZWPXCNffsp+Ya41NOfHj5FG2+8H9owiOBZcVTPuSUPFYwFkwWVhZ8LQ/B4WUn9bcNTfBGc2LlZQFmn6RoNhSUGY6Vn6C7+v0AbzG6xwlpAZHaHKpHIboCGo+9JvrVdnX1gMm8a233ep+Bu9wh40HYeawb+6111/X+VZWJnJysVUprU8LDI/xZPzMLfpJZ4jPGuFUQvMAr2sckTbUHFlR1VxEmEwvlY334XcQ0kNNXPz2TAedOAyYlQf00/hHuTn4ohd5H88zWazv3ECAacuJziQkmu8GJp0Zjpkwjbxk/rjiyHdCuFkp/izZGF+CsufAryCQFTVjk2/qlUL9VTBvzDftgwOMfIZcLYLjMwyHZcmkORsvThsJ0nQtALxleWGY+lRBOAZsNEmK/BfACcx+lBJnGMGZYuMGvTt4MN71yxdORswzE6ygFkg6NANvvulm3XDzrrvu0oX/XKrFpWbTp02VET/9JPWhcUycOEG1t1MF5oE3UZ4sysYv6/1SFbXTApOnHDhyl2yueiE8r1nwrD5lleb/bZTtbiJ+gisFPAmOYNy548Q9d98pqWkZiCXIAdqDEyYPU7lKteryww/fq1nlesP16ceZgmMTHPOrcJ55Vh8/wZUF/qEEx7WghPn4NxKcMb9o/h0+fEQWLJivnc+ZmVx1UEE767kkLDo6CuaW6Z/y14czDyZPvYnMyueiVaWU1ccPL9jQsFSqbEzUfxjBmULi4rl/BTwJzrf5gvQBkXn2J/h6zo8zB95a+fFgqo+f5MoKJDjOAPDVB3cyOLHcLAVIbP8mcisJqKH5zRY//Pj7UGqCowfezmhrblfaMxl8g5pQSdzpaV3Z8ns7goMPnjL4es5yuGse8uOUgVNAuN1UDpzv8mK5koENmK+8tJwFtnNBQRzN5ciwr/As5y4rHKk2MwNMuSlqa/l637hAhMVP7jL9X8apYB6f4Ig93emhGz/88A3Os3vm6ad1NcjpBE1ZrtLwJL3jwZoaxG4O1pwTsQbsublKiDqF5T/ccJ6ieXCHisyDK/ipiV4yUDLuxb969WqdVsGVDDxngWHoJpMe4K+VK1bocqTadepI/Xr1zI1TmsFc7+jUBfGc5MqBBD3DQLU2kxaEKZjHl8E8XzheJw7v909V3P85MOXFzM87eChe7r/vPunatas8/PDD2tdjiMTkpTUH0Bo55Vw8uz1HVq1arWuBueElV1W4ucZ3+tI/vstJ6VztsG3bVt1WvmLFCrp6pm3bdlqWfZEW18xyNdCcOXNl29YtOimdy8jatGmjK1DMPE6GYZ6nzLoVF+TnihPu7rx9+3aJPxCvZ1uc3aWrrrDxnAx9pqKs++BOG8G5J/qWHFTRORP/wgsv1H3GuAUPd9Qwhcq9USHD5Gx9LkXirq4//PiDFgYDPuMhTBnC7DRil3vvvU8Ps/n0s091G3Grklgwch5fBpMVpc0OtvaeOG1K+hkHpjuTlOmalZUp77//gYwYMUzLFNvHho0bg+Qeku7nnaerIajtcBDIaFkkPPPeiy8+ryedcYOHF158WW655RYlSysMX3nL+1yw/3//93/yO899cObp5HGnA5/BQXowEldJcvWKJxgmt/TiOb+TJ08WB8hVAXk5CfmWW2+Tx5/4n4SGmEN/CBI0l/pxEvag+wfpztK8x/W+lCMwIFjuHzQI5fTeYkn1TME/dpDhZMAWhxNluTqA82I++cScFkUC8VT1mc3ceJHb6ZzT9Rzdm6ssYBWg4mG211m2bKlEhIfJWZ3POqMLz38N2ocFLWrevLl6cNDXX32pm2ZSA+IW5Dx+8YFBD8iDqPw8ycwa4TYkx+21lsjNN90ko0aO1NUYJB8SBldnHA8OkM1bb70pY8f8omeJvPPuuzJ69Gj59PPP9HwPfh+Ccm3MTzdIvk8+8YT8+utYaHlt5JMhn8mo0b/Ix0M+lUYgZG4w8fVXX2vcLDAsLkHkZg48SIna2oeffCzDfxou7yLcWrVryscffSg//PAD4uZ66T+CUhMck9nb5dsKXzmxMxncsPoeeCJVn8uvkIPxB+Q7ZDAz1Gx9E4jClqcLw3md6xmfh5ZnltZwayCzmJ1+kHfIidrJi+ZbW2B8WlsgUU52yFq8ycLMdy3HVlIBj3jwMJ/j4cRbt25WE+byK/pITGwUwuaSMS5n4hIqaAEu//PzKTOXMHHSL9eCUiavdIKfXGfKg6npB9/l4cQ8pNocUOyWpzD428yr04KPL5xg7Pk8r/PT6rRW4Hk9q4FxRlpYHdNWmvC6lR5sUNhNQLOLwXtqqfSX9801hmfyjX4xDiYNjL+8ZlzxoIxMbyMr4gVvIbl+19+QVR3lY76qK9rBz/TPhAbGE9OSjibIE08+KePG/y4tmreCtn+jnv7F81dnz5otPw0fXihtxo4dA43nbtm0aaM8PHiw7jbDidsMn0XBCtcXmEb79x+Qcb/+qt0lX3z5pR5607p1a7VGPhkyRLdH/2XUKF30T1+t/Nq+Y4ee+Mb1r19//bVcdFFv6QDCuuyyy/RkuNjYaBk+bKhqljwHhI5kzG6cmTNm6E4x38OCufSSS/VMWm4A8OGHH0oINDe+l5KC8NzR/NfDXUrPYDDjuQ0RdwMZNmyYtqxWa8t1g0M++UTXUz6Olq8iCg4LCzU+FjT2SbAF5x77r77yqvw0YoQc2L9f3/fcYoikuXHDBj1nlIvATaV1l2CaG4sWLtL91/gsyZduy9at2rr36t2bgiqxco81Hk24b/++omtE4bjlE3fe4M4ghggMqA1u3bZVDz5++eVX5Ksvv5Jly5cjPu51r8cCN/ycNn2a7pTCuOd5VFiebjV9+gzZqLviGjD+XP/JhetTp06V3bt26Xt6D3HhVuHL0Xh8+ukQyPOyatDbtm1XDYZpYIFktHv3Lj227yiIhAfxcKIztzPicX1/TvxTuxi8tZXiQGLiId7UZnhkH7fDehENF8+MJQFQZsJ0oB8bW7du051h2rRrL7fCvCNJs9HgZOuKFSrCFHxC9/BjXlBuC9z2if1lJIv77r9fTSbmQ0m4gWk3deoUSUvPkN4oF3Fx5fR95iHTqnat2nLO2efI0cREPTRa9zZEnFh2Zs2cqTukcMcWbnxgNaz0s0nTJkqS3Ill0qTJep1gnvEcX+bLHXfeqQ08zWGGx3BbtGiuu50cOnxI/vxzkuut/wZOI8GxaJx808EdQ15//XVoA049qzQ5JQWVzC6zZ8/S/i92vva6sBcyNFjNEu4oy0GHG2+8Qe695175/vvvtJV+BRWVG1P+8ssYSQX5KYnBsdKQPLkgnmtKKasnwfHkeZ6a//JLL6s5wDsslLt27pTYuFhp1LCRPs+/5Qj3AZg9P4NM2W9SCHhm4YKFep/b9ZiF3flKxJ+jUvEg4rfefEtNlA8/+EBuR6XkfmTWgTueMnmDBZryPfjgQ7pLCImCz1MzGQttYtD99+nmjAyTFYZgHD4CEd2HNDLH+5nOcXZS3333PXL9ddehARkio0aNlPfefVsG9O8HzeIr3UWDz5mGIEDmz18ggwc/InPmzlUyvPOOO+UbaCDDhg6VRx5+WAYVmIG+NNDCoL9Lly7R/tZHHh4sP37/g456vvbaq3LD9ddrA8A+p+P5w7KgW3chfdnXRXLThkI1PNMF0rRpMz0S8I7bb9eGysIll12q5mBHaE/cPdkqJ9bBOccCyyX77LhBwKWXXqZE5akdcvOCPpf30bIyfdo0LdMkf+bLFDSMtoBA3V3aIjctV66w+yH96RPLhwUSG7ePYiPPE8QUHknDBv/qq69WP9R/xuU/gtNGcDZWBJcrKQoyFgWCLRFPOufp5UsWL9Kdezdv3iJPP/kEMj5QXoWmUK5cHAq9ad23oeW+7bbbZP369dKz14UycuQoPQH9TZCH3ZGnHbw8pBgBoJgBkIs7fuRAUzMFwDhLBoIVj608K5Y5T8AmzZo3l9tuvVUqVaqozxDcuol7n7GTWPtrXO8T9IsHtFCzMyfEm+29v/n2G9WUuCUP73OHWB6IXL1mDRk9epRqQ6ywfN9XElpyduzYQZJ5evvevZouBCvOuLFjQcwZcujgIb2nZhwIkEQxe+YsJenGjZvoNkfcjohmGTXlTp3PkqEgfu6t9uFHHytRvPfuO2r2sFJSEzKk5VSziZte8pDp995/T36HdvLzyJHSsHEjmQfie+SRR5CGxqQ6FhKh2Tz11NOyAXl3+x136IaWzKs33nhTtbp33nlHt446HsHxrNQ2bVrrtkssMyQdJWWQDT8pP+PTt29f3TiUe9xZGAxSprln0htlinHE8/oe3LHALc13ooGgfOwPJlF5xpnaL3dV5pVly5YrGZGc6De3aOKFRo1Mg+mGaXA5k4AN1/r1a03Zgi98b8f2HSofDz23tE0L/EYzl2Vy584dqun/V3DaCI5dZpY7WfCwX904MiRYnv+/Z1HpP4AZkI5KcLvUr1/ftM4ACy5JgQfUPISCSk2IGh6ncFx55ZXy+Refo7CIvPfOuzr6am3XrVsiqXyWluFdgfjbbWax5aV/NAuoHZgCma9bbHc55xw96Z7mqlUhKBc1I24w2Q4FtUXLlnry+iaYUJ8N+VQ7n/+ESXbxxZdI3bp11Kyg+V29WnXd9dYcMk0iU++KgPE/G6aPhgNTzphUTtl/YK+kpKZI46bNNa48v4CVgtTO+KdnpGvDERoWqsQ7E2YSZbrkkovl62++1krVoEF93aRzzNhfpUrV6irnrl27XURhzq7IsztkA+I29Mcf5aKLL5Y6derqVuM8dq8czLRVK1fJ5i2bXanKdHSnpSdIsNy9+KWXX9TDsHkmLPOO8vBkK+7FxzCoKRly9c4nA5JvVFS0DH7kUWhNwfL0U4/LjTdcKzt37ZAdO7fD7XQ9CWiiFpOwJwgeVE2J2CfMckGQlAoAeXmITXhkhJIwSZt5pqSNJOFmqRxcK0xwBtx1OiIqUnJz7JoOfM/SpqnhcbNRpgfJzEob+kMip798jt0tZyrIDywVvnP0xFFqgqMH3s7mJZ1rW65SgvuUibRq3VIehiaQnpYukydN0sXr3KqaGa17c7FQwFF74qnk7JyltsJBBWY2Cxor7KWXXqoFSs80wLvWZpGKAvlJJsacMYc785LRlOhIiBo1LUjmeToS8I03Xqfm6bChw1CITX8Vw1m4YBG+BcCcvgjvBaBA22TF8uVKLOx3KV+hgppOjAvfZyf1NdddK/acXJglvyIcZyFTyoDhslM9WBo2agi5AmTVipW69x2/c5NMam83QCYYrAhvKcghVwlg+7adkpWRBdOmi1Yuuz0P2u5o/X7zzbfifdN3ZNKf253XBKlfjsYjRcaOHQ3Ng/fwsI2z5wPlvPN7SrVqNRGOlgRNl+joWJ2KwR+cF2YGV4qDE1pxU90C/LrrrzN70TF+TG/Iwbxjmq1fvxFxYKKbNNc+VXUFmaffKfP1N1wHbXK8dIY2umvnLklEvo8bM1Yu7n0RzPC71DQ3Zvux5CJMOhd2vFYYSvoIm5oU/WQD4Pmc9schXiQx4kjCEY1beloannWoxmkRoy9YexjmokxQO6QmRzM02nX+K/3Sffa0IDMNzABQOBowmr/mulW2fbmicTrdoISMgadz52zJwRw6LSjQ4Fy/TxZM/KuvHiCVq1bWvhAenceDQLgrLzObLjsrSw8A5ilPVSpXcb3pBjdb5ERPSrNm7VpmNQqJq18K/1hYWDF8ZbR1qeg985skRvB8hsaNGsvy5ct022yCncjsq4oMj5AuMGPZGczCvg1aHV9fvXqV9i9+APPvA2iddJ/ANOW24sT69RtUTh0B9gGK1BimTSRI3xyxh2sB1NhW6FblvXv1gmZ5tiyG6cnwuIEkBx3yEG+aUtxElJVl546dWhF4kpeaOx5RJfl269ZV04fmFedeuZGvHfO85wltDJCmCqZxIfC35VzAMySFxMSjMnXKFBk2fJh2+tMsZv+bm8i8/SoKhk2ZG4H4v/rmS/np559gMjeU5i2b6zQMbj3fu1dvnTvmOfWiNNC+M8jI09gYby1WXuRJc5KaG+MRC02PD3H7eSZ2RmZWkectMMaalkxiOH4nGfJ5B/KC5jev8Tb9pmP/H+sKB7EYrjlPtnAenSkoC47wxOkjOJcrLUgg7O8KDQlTouIwPwsHM4yZRwJITk5RrYkaEKddeIfMAshhel42rWYevrq0MCaw+mcljXnXVCgA97WVM7/c111guQkNDVNz+qwuXXT2Ovu8KDcL9Ly5c6RRk8ZqUlNmXudqDb7IkTAOhLBjnptj/jRsmJqmPA+2cpXKrq25TZ+XN3iJmkNsbJz2AXJ1RQJMF+1/Gzdeunfv7jq5/Ro1kzkIwYaA2mNMTLSaxyRcdspzWgrjTQ3D2urbAkma/rAipUKLoySMB9OD6cJ+P/YVHhMsxQWgD5Yz4BkN3333nfS44Hx58IEH5f333pNvv/lGxo4Zo6sC3I96+mPA9PcEKz4vUSZq9PXq14OWXF7P2h05apQ8+eSTkor0//yzz+GtW4bC0NiZryUA8ykgIEi1VdWuvEwa5h/LAh3LMLeLJ2jSUqvm9YIG1wvMzxSUb2rmkZFR6j/jo3mHsszf2sh6JATLN8mPDRqtDj7rmd5nEspaqtNGcFzJQFfyYuIbzCAr/6hpBQVyP322kqZV53V2mLP/iVtus0D4Avfc5/vso2HFVHOTL0NCrRT4SsKgn1ZrymeYA3pNrxhYBdF6jmEGooBz7hO3Cuf0DA5gUFtITkrS09PZ6lKzYJg844AYPHiwHpzMTv3hw0FwI0Yowf308wgZMXKkPPHE4xpX35qGabkpyh133AmT1yGzZ8+GSbZbT+RinxjDYV9kTHSMTjPgyPDadWt0EmxsbIxWBE0P+EOwM5rz7zw7rNmIcMSXCcQTzNhYMPaaBHAcMKE/SnpeTt/HM67kKgRz3zhOSP3gvfdRcSvJ2+++o314I34eKaNGj9aDXywwvhaMacXfbllZ0Un01NJpzvFeUCBMP5i4wUEhmgc33XSTThPh+bKmrLjfdwPXlJR93SsKnn9RpWoVXQ+6aRPPmDVb61sg2W7avFm7Jagls3uEZSgaxMgDjFjutm3bptcsZ2HdunX6WQfPRUaASG2BcAFSTw8+ytd+Wvb5WulN0Fzm4T7ssqhdtw4aLnPWhVVnziSUBUd44rQR3OlECFoojiblQBPh1ARvUAuZM2c2vuVL7dq1lGg4TURpCxnOUTyq9WpquEBzgwMapjwULnS+wMrXrl1baQrTb8pfk7V1/eH776VW7dp6ApapnKbisxOdvzlthaeG0Vxs3LiRjrRx9jpNXa6BrAxzm89RizsWGkNDrFS5kg4ETJ02TU+0atO6tZop1CxbtW6l26bPmDlDK/UNN1zvehMSoXSxklG21avXMKqF44oHOBWEpZBy6gE2/EMFJgeYenXiRZRhkAR4EM6Uv6aorJ99+qlcesklGg41L45qkgQ8CdNNbEVBTYXnlg7o10+GDv2RUdE8NpXbxEm1HcCTLEsLjsZefvkVKuNMpLEOwKDMWeD5DjNmzFAZ2FXB8qjy4HmOgpN49JQzj3csTJwwQePRq1cvcwFgPJu3aKFxWblypfrDhsgC4zZixM96vWvXbsU0kP9OlDpXmVSeTguRV/kmK5ce9JTi+hLZum6cDa3a2V3OkbTUNJk/fxHIiQWMpiln4rM1WysTJkySoOBQufDC3mjJzSnxrEgMZsrUv/CcHS0fByZMIePE3f3796OwcHUEHoJjOJYzsGQwCcBO/2uuvU727zsgY8aM0w5uFkxqDlaFYqXu2LETpZY/UXipNWkF1LvQIkGs48aP0yVDf4EoSUhW5SwO4WER0qJ5S9mwfqP8NXkKzGGePBWjLTzD5lF/h48c0kOUSX7UBixwztaVV/YVpyMXGtPPkq2TX/PRAPBkrxzEZZ+aiowhz1RlNwArrIN9cahUHNl05PlaymTSxP3pzi/LsVGxDmdm+mjfqmsaDUk0A6YrCcu9UobEYFaI+AIJQo/yg9/vvv2umrc8fJsn89Nl52TKmLG/qEnIPGDnvSnBhKdsxwaJhWY1zUPmDcsIB7FIdBMn/qGHdutzKEsMlyeQTQWJ86T8gdcMVLOeJM1+5D59LkceBcm4cb9qo8r04j2GsWvXXhDmbNXcbrn1VvWToEZ48cUML1hGjvzF7CSC66YRMFrsjOlo6GJj5aabb4R8+prCaijONFAqzxygOxlJS30uqndV428zubI4UMzSJmq+djbTVOIIKvu8PMFMq1ylikye/JcsXLhAn2Pmc+CBUyA++vAjLXRPPvmUHqpsmVTsO+Gp9Nu3btMRQXuuXfbt26uTTL+D9kU/wsJC9RDq8HDfw/ieYMHk9IgJE/7Qjn2evs75ZdSQrHf5Ub5COdkL4liyeLGshinBIX1qRlu2bNET4jnYwOcfffQx3AMZF6qIvrFr1y6ZPm26JCQcUVLt6doEQFMfnyNgAu+F6UqT9Zprri3QVikzD2zm6o+lS5fqFAS+xw7/hYsWypCPP9FjF2l+c/4Y04SmO00nmsTUWnmqmKd4rJycYMqT6fv17y81a9bQcDxhSNuchkazbtXqVToPjmtG2Tm+Yf0GPZx61+7d2n/IowmvuOLyAm3W2z+CgzHVqlWXcJhkTP8pkyfJilWrZAv853zAadBuf4ZmEwuS56J4jli7c7Rw3vK0f563wdFgLh208o/TPN6FGc210JzKUgXljmnCRe2cirJ8+Qotdxztp2XBAaM3XntDz1rti7Toc9ll2uiQ3KkFs59wJWTkRGcSoTkKM0gHmN595x1N+2uvvUbzVLtMAMa9YsVK0N5W6dGUO3dsVwuGUVi7bq2SO6f03HTzTXrGLsMx6eXWhM8c5KuVwcamLCQr9W4ibEc9Qe9O/aEzTj1MmedRshJGRkbrVc+osMBwvhe3xDl8KN4VIidJUMMJk8v69JFnn31OO9JZGDkfLTMjXVcTsIObmhK1OhYGFsD7779fp55wGRf7x8qXr4DCoZ76gKms3HKHFeCWm29Woo2GFrUIFY3+sdBa4nJqADW3hx56SCtiFoiQFV3NJwRCkuROJa1atdXKw+venf+eoNZDsrn99tu1kg/9cagOxlBbpPlDM7BrV2i4aem6wwTDDYY2awq7ORd0797d+r4ua0NaBnA6COQNCgiSTvDrrTfflAo8ZxXv8L0RI0boKpEbb7oZ6fqs+mOB2h2XRE3+c6L8AFk6de6Ed3wRHKNr0+k7bLg4mTUf5hQJlvdp3r/w0ouqzZ53/vny1ZdfanqY94qa7fSL8WeH/WSQ2/fff6vL0VJTUiUA6RsXF6sjqa+++ob22xaaKuShuVE0nmP7zVdfyjPPPaf9dpb8emg1iHb37j26qoaHWjP9GefExAQZOHAgwuR8OzNhXU1kpGcbNCwcOOHZtpwWQv8YR6Y984UrcDZt2KzTSQKRb3hF/WjXvp189NGHIH6T9noVcWd4SclJct0118juPbs07rxPPyk/u0p+/PEHEG2MphmveeeBG3zH5Mfpxz/20BmPAlMGknNhcWZWtvTu3augkHuDsrAVZCu6ZfNm7VSvVbuOtsBc01eIJCATxaK5tXTJUlmxYoX2xdWAtsHj/9gPxl1D2Fl9TtduBQMDx4KVtGtgEu/bu1dPUWeFoglTGEzFfK0sa9euVZLjyB5H1Ro2aKiEYAjVLa8hI99gsCQxmiXsYGZrT63QvGJWYcyfP1/DaN68hdStB43So0LzGRJhYlKSai1co8u0qAn52yMt2J9H05QNgIUd0BrWrVuvqyEaIa08+y/ZWKxZsxpkeUA6n9UZBbjSMeXnPY4ssx9q6bIlWlEbIB3OPudsncjKqSPUlDp16qykbd4pvl+ScSFJcj+3Awf2aqPH+XTc5qpqtarFVCR33JhfnPjMgYFWrVrplBOrH4uHZvfscYG0aNlKfvlltIZDMO/ZvZGUlKzrfFcsXyZ7UAZ42HgPaNM8gIjdAxxFJTzzlt0oXLs7c8ZMWYCGkecMs/+RC/XPOaer5iXhjrv5ZJg8lX/GzGlqjnONcQ2Gd0EPPZE/AqYty8bx8fcR3Bm3H1xJCc6zwJQFVKVHvpqCcawomFaMhYCtIwsrCwYLKDUp95wy+mH84fMF/ru0B7buHGbndY6QGhw76ayk5YcVPk95LwqTinxe//iJcCgb5TUmBZxHGlqF2heMNmA6tq2KYyoD/XaPnJHo2FKa3575w99mVJajvzxsmZoE+6qMOQXCoDwuv2ni44fOnqfSyQbHUz4Tpn6D45w4kyfHgnnfJnaHOaibI4MkTZOO3GmF+eCZHseuEJSB72ZmZcjjj/1Pp/DcDM2afWKWJlQYnunhPlzcyMWyYe7TlL/jjjvk4Ycelnvvu1fvu+NmwmSZYV7yAG6a2/SHjvnj1sJc4fE3XtcygE9aAMwHLQe4Rb8s+CI4DR/hcpCBZVdXNOBPTT7tL/aMV3EwZfDvwH9qw8tjwVNsK4OPB+sdflivlPRdy0wi1HQESvpuyQoVwaKIsOAvw+Avvktq03secT4W+JwVR18y8r733KzCFdrAyM24mrCNbOY547/57jkNgteJ4uJswi5ZuhGGmPjN0z/jh9UIGRzPT5Mm7A7gPEkSNfvFLHmPBxNfIz+dpalxS6PPPv1MN1mlVVA4bkZOxoHwThPjp/W8+eSz7njxv+ML6BmmFQYvsREA0+GXZ94VlsE3TBz/DvxjN7xkcv09SVYUHuWhxDD5bV5kgSpckI+HksacVMYK4f7lfvXEhD6WeCcmuxX3whIUrlRG5pLUiRMNmzD+enpuwjN+We5YsCqsGeGkmcsBpZLIa4FBWZXeMw40UTnx3Gxj7i2HOy99yVic/G5vTkBAL2j64NOSqXAI/x2cNg3OgiZ6GYToKXbRguUbvqJa0nc9W1+rRS4pitNmjgV3GG4yLWm4JUsbb7+Kymjktkxa46c7LpqT+s2XXCcTZ1+w/DbxKC4ux0PZaCS+0nXjxk3at9umTVsdGPINxsFXo1g0Tozvicrq6W/RdKd/VhryXkny5d+jwf1jTdTTjbKqsKcDJSXC48F3nC2/i1bOwtfKRoYzCaaqnExBLjnB0fuCGlnspgTecrj9KZty6jdR/fDjuChaof3w4/Si1ARntSWFnNqgbgc1EZ9/FwrLcmxXPDjiZQ0unOkgr5TMGa2iOOcbvG65wqDmyMELfpoRXPZBudOV1zkaybTmyChHFnmNz/xdGsOJwDt9ju/4Ev7pCKYZuefqBEb1WK548KblCCt9TUDFTZf6L+OUEJz3FWQDL/6NKCyPb3dssICyMP1TSK7ksMjKl/OFY93j9tk5kpGRpmlFZ402Mo3NFAfupJGjq11oTpkKWrI8ODPgmT7Hc4CL7HWtM6LI3UIKwTP6x02Cog8xDek3yyUnNJfAk/8UzngTlRWArT6dL3LhfRYgTiblp6kwheH5zMkSFI954+6yPL3onwZQjc90KWtQI+MhM9dec63s3bunIN+MlsYVDXb58osvdSt5ng3hvRHC6ZDxdILpfvDQIXnxhRf1XAuWPTaUpYVVnpme3KmZO0SvXbtGGw0uLyyuHvwXcdoIjp2HxpU04anicw1kkgwceI3cfPMtuoTFGyw0PG+h75V9dekVl1JZO+gSLFA8d+DRRx/VtZMHDsSfVObPnTtHxo/71efuJGcySC487f/wkcO6usFtFpa9Jsq1reN+HSerVq7QLY4MuTGtbbqNd5/L+shbb72lp7XzTFKzZtlMpeB37pvH5/41QLy4bf7Eib/LnLmzUFZBPnClAee28cyH3377Tff2a9+2nVx2ySV6vkeLFs1kwFVX6VJDrh1m2pv5m1Z+n3i5/6fjtBFcPhouy5UElknIOUschufSqTVr1rjuusFKNH3aVF23OH7cWF3u5Dlcz62bk5KSdBsZbj4ZFc3tdk4u2v/EVpFm4aD775cLzjtP1q1fdxJFnBXD0xUHp9SsWV1uu+NWadG6JbS024WbjVr9QlyLu2P7VunR4wKZNmOajBv/qzRq1EACg7jO0iFTp/yli/SHDh2qeXpi8JTvWDE8mefoisPxn9NyrN9KkPLsu+bIqeV8gFbIc//3nK7GWL1qtdSpW0cGXD1QT81q1aq1ngHy+uuvyaOPPKJnwnJis1u+skibUwvyQ1lKUGqCI195OnrIT0+UlNQMGDWaVOyk5ozufLnu2mskz54rkyZNxG/zjC5cBnmxz2fLFm4qyO+5MnPmdFXRLX+4Fc3B+ENy5PARadashYRyayRcI1dxzZ/Z6oidwJTcCttK4uM7bR2RJer4ne9SbnhnftNcoIP2ymt4jlsxmZUEhR2302H2ut8xBz/z053trjD4uyAc47913SJwkhsd+2ao1ToRX26QSCvdcPWxMoYGFv2DP+o340r/zDXzm30/ZtCAYJ5wUwKeXsWJr9bzXG7Ehef83q37uTrJlhsekMh0SREyNQONWHZWhqYNu+1M2CYs30BckDYmzYxsjI4lFz/NEieueLDSx8jJ77xu9Q+aOPF93jfPmN8oGYWeMe9a8TbxQznVMEw/mNUw0/G7ribQF+EdfvOvCBhuobCLgv7ROuEh1hP/mCiVq1aRIZ8Okd9//13efvtNPVJzzJix8v333+t6Z641fvyxx/RAIQsc4KAMxoRFfDRMV7nU3+Y5d7/p3wcrNbzdiaLUMWGaeDqFlyQnJpg7Opro+ORpTsHQBlauWA4zK1MLFBfFs+LFxx+QPbt3S9PmzfTIOx44HBRM0jJ+cC84brWTjcLRtl073e7ILIUxJ6fzwJEdO3Zqy8cj25JTkrVCIvQCP9yOcP/OyEyXhKNHJCU5SXKys/BukuzavVO2wgQ7cGA//OdJ9uz7y9WDl7kgnVsGcQsibsbpLtTGMb58ngf00oTj1jg85o1nOigZaHqwALISOWHWpenWQUyTrOxM2b9/n2xB2IcOHda40SQ9ePAQCrRZ/sMlSrzHT/cedr4AeSgbKhVlp9nIRoRpRBOdjQrloWbM9LLkYiXkSU98nmGzMnHtJePLZ20gwNycbJWZ13iCP4mNv+kPn6fWcfDQQT3c2KRLcTA7b/CT+8UxDXi4zpatm2XDho2ahpSd9wsaCCUSfIOc3G6dacw48WBoHtJtPU8wLgTjwTKWAaJgA8qdTnbs2CYHcI3yE9x/jURHPzdsWKe78XLvQO6lZ/lj4BpZLQI+4/lcUTAPN23aIqN+HiXRMdF6HGPviy7S7c65ewmXnrFsd+nSRU+NqwoC5Pb4rBuWDGYHGzaK3MwgVXahbLGscuumFJjSGg/kJfP2TICVKsdPneJxiib6xhfS2gqvZMCf580iMJXFE1zwffWAAbJv3375dfw43VmBrQwrD089/+arr+Ttd9+VT4cMkUqVK+uW1zHRZgslEhwXQv/55wQZOmy47sbAhc4833To0GEy5pfRkoQKmYOCHBIWortUDIZ63/3cc7XgWAXygQcekL8m/yWfIAwSLsHw+/a9UjfKZH/Iq6++qnFnRy+X7zyKFrRnzwt1s8whQz7RyuHAvSpVq8KUu10G9B+gO0NYWcCCxcGMn34arkfn6eJ2yMDtr++/f5Ce3WlNgGRlZIf9XzDtuD3RWLTeCxcskDRUxDvvvEfuvvtupMP3up/cfqRbFgi4OrQqrr88q8vZ8tJLL2s6+IYhWxLIiJ9/0kp1APEiuJUNj++77LLLYQY9KvUb1JUPP/xITU2aT489+j/dEYVbrVepUlU1CR5cnZScKEePJEiFShWkXGycBIUEybDhw7Xb4V3kHQkvfn+8VKpYSbdCr12vrh64Ex0dp+EWhWn8WDZ2o1H57NPPdecT7v3HdKSc3L128OCH9bxckifNPoedu96u0j3cuMyKXRrU5LnDCY9p5LZOMbFRuoSTmjAHS2668Sbpc8XlUrFiZT3M+wjIk7sif/31l2h4QxFenkz4Y4J8+eUXcvAA0glhcfeXSy+9RA+QvvGG66R+/QZIk5/VbHc3LpCJdaHAHPWuym79g/JTe/v888/klltulqeffkrzj9ddymUBmHcff/KxzJwxXe65527kF0+WM9okP1lO3n//I9m7Z5c2tCzi1WtWg6V0g+7Xp0cWGq+A06vNOZEWlZHOLOduGQz42/va8XDapOdKBt1v3TP/SgiSWaPGTbQjmvt5MZPoSADc3rpc+fJ6Ijy3+N69c5dk4DmLNFjglyxZrPtgsY+CBYzExH3f3oRanwU/unc/T67o21datmqFTN8rjw4erH12CALOmK8mTP5WbxXcQ46tNbem4YaJPIyFZx/wMOjt0AqfevJJGTt2DIjvFd0m55JLL5XWbdqoJvfiCy/odtaWn4wLtzSnP4lHE7UlZpw6duqgh8Q8+OADMk23P4I2Bsf4JRxN0HtvvfW2TAHRcb99HvBbvbpZF8ktzltAloiIMF3Az0rWskUr15bkx84ImltMoxeff1E3h2wDuS+97DKpVbuW/PjDj3rKPLU6buZoTECYa9Ay9iD9tm7ZovEhuENw8xYtdQNGasX8bA0TitsOcR8+nijVtElTqVq5qj7PjUp5XizzklsyHQussOxXvfmGm+W3ceOVpLil0HnIT4Jnpz6GRobkaYG72z766CNKrAyDA099+vTRLpDhw4bJK6+8ojuX0G/GiWVuO/KLjdtHH7yv2xtxk1Ae0kP5uOPyH3/8IY8//j+Uzd3SEsR36WV9QPwNZeSokfLWG29qFwG8gmPenUQFALT7BYTF/fE6dToLBMDGl0RpSI6OoPf8+tCDD+oxkxejPFr3eJNbMN13332watbpHnHceZjHKSYlJsvz//e8bhOfk81Dh/4eKEfg0yVxqVE26yFOMbhdT7NmTWX8uHFQpzforqpspffCJGFretHFl2hrxn225s+bD0JbqpsQEjzZnuo398SiZsD+B5qlQ1FJeVIV+y14SAi3ieamk7/9/rs8+/TTaG1HoCB10n6l4qAHOqPQUAMcNGiQ9Efrx+2jqS2xoHBqwKuoMDwo5WJofWwZaQaMQzxIZDwFXrVBFECS1i9jfpHK0Py+/uYbEHoj3f2Bo540o/r17ae76fKAGGqn3PGXhTkLGghN02HQmBrUr69ycesgdu5ffnkfrfB33XWnLEOaDIIWysrJvezYaLDCWf11nmDF3rtvr56mz3lbPPiFp3IxPBIfie2O2+/QQ0wcqHBWY2JgiIEmMbdY4r5r7dq2h7b2o6yDZnfNtdfKgAH9ldxY8XgAdqvWrTUtVq5YKb1699Zth9hHV1AxiwHDp6ZKc/Ga666T56DJcksiCpqenoEG5mmZMWOaasWs1JSN2n1yUrJqagOhdTOd2C9JM5Rk9+uvY+WOO2/TxgAMZuaYIZ/ZsL78ymvQontDdryD8sY0PIiy9DzykuWKmigbOB5oQ61u+46t0IqulbSUNJXXk4hOFExPrnvlTtM8n4P9yFa/oKEDo53xU69oWMxbd97QgqBGm56aJu998JHGJTjYbNu0b/9eaKq36AgsG7PeyId/A0qtwTH5vJ03/Z6Y1saXCzuS11lnddHKtmjREphCDiUSbuOMbNVNFPnM+SA+FthRaDlZyZjJPGuUFflimFUkC16rUqWSTIU29OekP6HlVNLKxtY4HATEA2GInbt26v5v9MdyFqzfppUXiQXhsGKyclG15pbLd955pxIJ19XRT2sbZl4jQUeEhQs3kWQfD8mamgF3Cv5jwkQlc+7Txj4T7vjKQ2nqN6gvKSBSblLJyqMTR+HYivOUrhbNW8DcDVfH+DAnWAHDwnlik1NNQhbmEFRODlyYwQETF1euucB+N7v8BFl4fsHV1wyUrt264V2kEWRkX2gTaC833XwzSo9HRnvlMTVl3QkYMrDPR3dHxh+v0S8NFsWPFZX3GCf6xzDCQpmO1p5ylnzejufIroEGu0MPpHn6qac0jUO1LypMN5N8CmYcRxdjXQci0xykOT9rzmy5DoRoPc84MZ9oerN7gX2yBLVeOv7xIJ+eF/bQXYCtfGYcRo8apXnIA8apodM/NopsMKkhPvTQwxKoh2O7UVCe6IpUDo80dcWVz5rJ0xwkQHmLZfeL+z12JfB823nz5+lhSjx+kl0DPIN3y9Zt8NIMfHBHasp61cCrEdeLtM+O8WB61a9XHwT+svo3Htow6xjF+zthar/bnQxOCcHReeLEhPOOlulj4I6u3DOfu+1mZ2VDg3G6Tn3Kl2Y0F1BRuP9++w7tdSdY7kbL04pWr1ktUZERMHuaozLRv3wlmXLlYrWzlhsgZmamwww7qKZMEkinoPBpDrtjZC55X6N/YaodsjLzOisFiZYERe2QFYzXCFZadgiHgIT4Ln9bz3Mbap5Rmp6RofKrg7nKgQGCz7vDp19QMhCnBg2g7QXwgGa3OW2eY8tvKoUhd15xjfy5vtNZzxJKnki3xWhIAoNC5X5oPmxYqEGo33iG5Mu9zxgPkqcB76inCjNz37pnRhd5m5/8o9bE4ElwvMFPvYdnrHi6NRBfzhyhx77IXr0v0nQ2WinjZ0ZJ69WrI6/ClL7uOnNqGKPJXZJ5bCKXT7HBOAQNjNobt/vmKCUf4s6/fJbCqNwAux9ioqPoi+YXHaO3bu06DXPAgAEFu/PyGb7GBo1bjHMnXeNLYSCW+r8b3k+Z+xxxJ4kxDykYGwy7w32wD5Ppiy++kDvvuF3uhrZ+9113QWu/C7/vhMb6ozG5kSY6SR3va18uyiZltOLHtG4KzZBlled5ZGXluPLm7wGl8uVOFKUmuNMBFiBzctDFOnK4AqYMWyLOjStXvqL2hzCfOLJ69jnnIEOdaspyRI9bhbNTvyIKKDNTKwBKJkmDgwI0IS6/4gqdKHlhzwt1D31WcMLK/OOBT5GgPJ9nJdb/lfQ8/bHIp7DfvMYtvT+FaXvrLbfIVTB3L0F8OW/sImiHWzZvMVUBYTAc1Yz4HZWKGoMh79KDfrHPiNprGPvIYuO08fAGzXuGaA16+EbZyFQcOLLJClujenWfeUVtkNdJJKpt4xq10/HjxykJDLx6oPS78kpNZ+b9GJjJxcGQrRtMf5IrZeBhMuwHJrzlKI+Gj/2QuIFfplScDGJAPHQciWZDbBpTA5b3Pn0u08nsTzz5pDrWFY52syvDijvrDC2CKDQGWnY8ZOV3anIR4RF6ehkJ1ZTTfzZOG8HxTAbjTiaLzWlLPBmKRLJo0UIzhWLHDjUr2LdFM48VsXWrVppRy5Yu1c5xHnPHU+TLg+DYJ0Stgh3zHP0cPnSYvtOhfQeYMlfp1tP/+9/jBRXaaEOWY4EwBcG6xlac1/BFr3ueRWm1ziwk5rsFvOBVbliOkmF6csTr00+GSG52jrRp21b69uun/WbPv/C8VK/BSmwe5vPqL7/AP2pdRsMycrgdRfP8bclsnG+Yw1FgxeoIJf12v2/e4Sc7vRkVNgZW+vCCfvJZ13dqG/pb75t36Sz5rd/WNWP2G+3PrQF6wxRbPRcBScB3fcFao0kCIgmwsr//wQdqzvIIxwYw/ftcfoXcdffd8r/H/6dnX1golE703isIkidl1S3o8UxBWSgCxIty8hPx4TuWv8XJ7Qs8UpANuR1aJs+H0K3IXWlES4F1g+X3jjvvlFtuuVXPHSEJWifOMSTKzDRWWfVqYeAW5DPb0fPdv0ODo8XurRKUBqeN4MhrljsZsDDwxCJOIF27drX88cd4ZIBNbvQ4tJjkxxHCSJikHAVduXKFjpiyw5QEyJPEWcDG/fqrdrjeP2iQDBs+TN56+y158KGH9ISpXr0uNAVPncvj4wF+siIZwvEAf3pd40/vist4zJs7VwvuOd266oDBm2+9pbPRb4E2x+U3PE6OMmmfFTU2kgq1OLxPUQuDYTIML3lKABIW07E+Kj8HRLgCgSat8c+ayCo6wMM05Q9T0QxhaRoUfMd1EK/1m+An86AswNFiJIQexWeF7UkalI/XOFLONN63f798+/U3eK+G/DD0R3n3vXeV2O4CKVwDzb158+auN4vCm4zoN9MprlycfjdL+Ao/w7B5Pgnn9nk2ficDEk+vXr21/vDENJ1H6coTgoREArM0u2XLlulASJu2bXSQjvKzX5IDM1wf6w3KyhFjLgOjhkditCyZfzJKTXDM0qKu8C8UO3yWHpzDxUOKt2/brmvxuEyFR8lZYIXiVAFO9+A0AI5W8vzSs846S++TEJiRXJtJgmjWvJlEREZqC8+ObWouixcvgbwuiU+kHsLfonClgd5yfVcU/uRtystPysp5W+wnDINpw36ug/EHC47vs6aIFMDlVeGVEYQVnisMvMOKyELPa8YL18seoMnJSkINlxXms88+dU1aRkVCJWGhZ+PAjmj6ZzQui8A8yct13fWpcvEfvxc84/oNaMXEVx2ZVrjlNigcH362bNlaKyLPut0NwiX4uCUDp6s8MvgRnf5Bfzi3kFN7OELN+Y48ro/zDBnPrKxs5P1ifc8zVTR8xNtcc4fP6+xj44gjyevb777TvjtNJ9d9phVl4+4pOtCCcGgd8B41Y564xYEmDaMAVhiFHdOnKxo/9iH+NXmyrFm9Sic4W3E1XSEgXrtD1m9YDwtmmS5z5Cg2wybBUVZq27+MHm1k8iBtyj17zmxJTkqSOnXqIF3NKPc/HaeE4Iya5nb5ZZJQ7MwP0cECVjgOCjRp3FhNV2YEHQcVWIiopice5UHFi6Rx0yZaKNjaMhNZKNkhze+TJ03SOXM0xdgishX+5puvCwp14YJ3onDFWdOCyWylB2F9N79pOnHuFzvz//xzkg4ucASTk1A5PeHee++RtPQ01hp9nkTA//gzH3HOc62YMDfoLL8ZboBUrFAZ8RWd4Z+Rzv4VM/paXPyYVuee2026nNNFNqxbr307nD9Gs5SrBXiO6qpVK7Vf1CSVSX+GSfPGgl7nn+ue/uN3j2dIkqx0XL7Fe/Pmzdc+IK5MMNJZZEy4/FHY9IhCDiDE7z8gj//vfzr9h/1MTLcE5D+XjU2ZOkUJjKPktABIFOzDZdcFCYnhkyjegzbHA6FNEGyUkZKugM0lEw/jrC4Lm86h43GQixcs1LNrubEDyyEtB86P47QUTu3A0xq2EjlAzW7gwKthXVwkO2EuH4/keJJbE8T3+htuUE3r1ptvlT8nTtRywjmH7Ftk/syFJXDtwGt05cy53btLHSoA8Jqy0oytBq137pw5OmGYDT21W84VnTNnrrz91tuQzyZXwWJgWTRl6Z+NUhNcScHVDHRa308SLBw8CZyZFRgcKK3btMI1100ChYTPsKXiTHL2fVxw/vnasapTFvAe7/fvP0AaNGqoGt7111+vkyJvRMHhqoMLLriApUGfZTiFwGta4I4PfZX/efuhoN+urwAL0/mQk/0m3PbmcsSRpMKO8H59++rKDe75rxqoS4szLTdLrv7zksqYLjabUxuAHj17qObw+muvyfXXXSdvwyQ3I6m+ZDNg3xLnd3Xo1EEWo6HgYEfLFs11Em1WZoY8+9z/qd/Uet1wVQj46/bbumY+CJXX9YyVJ127dpVKlSvptJ6BV18tjz/+uC7vOhaobXJRf8dOnWTpkiVy6aWXyZ133iH33H23Dhxwd5JrEd/+AwZog1arVi3tp8oEQfS98kp54IFBct9998q5CJvTKgaAcFR2l/8FzFoQl6Jg3+7LL78s4ZER8uVnn+uJ/7dDphtuuFFeePFFpPf1OlBDT6npMe8Y7xkzZsiO7TsQx0Q9b9fS/I4FpjW7LQY/MliJ/IFBg6Rfv746Cfz+e++V/v366yHjXKXTf8BV8szTT7uIilEIgIlaTgexaiIduOqHstI8vxPljI0B8+olxKVbt26I+vHl+SfgtBFcaVYyWGBFoPnZoWNHtGZNpXv38yVIT2Q3nf5WJyrPML2w14XSHCZo+w4d1AQ1MFpZgwYNdMkNR0yTEpNgHq7VVvGJJ5+QwTBpmjZtJjVr1tIKZKEaWn8ewsypJRZoQrKjmiq9N/gu56/RhKbcDNe00gF6rwnCqF27jsu0yNfJu1w8festt2pcuNyJS6wGgXzfevttadSksdSuU1tJxWrtOXWBceHoGv200sFyJntt2gf58OCHpXmLFrpullorr5tnCoMVjf5zFI2d2j+P/FmG/zRMbr7lZrnu+uvkm2+/kZGjRklDNBDaaFB+iMN3+J1aEud/UQs0UppwypUrr1N9SAhBmh9u+Vjhy8XF6QRnzrmjNsK1kpyO4htGbr7HlRFcl/nKq69JhfLlVNPkNAcu1Xr99Td03ptOIXER1yNoOF5+7VU9EJlrUDnazjNSh//0k3REWeGyu4oVK6qmTxOT/VaNIDefJ8+Z/kZ35ae/XAkzbdo0ObvrOapRbd+2FdphBrTC9+RhkBG7QmpUr+HqHjCDI3379oP52E5at26jk6gZF3cZKR5M4/vvf0Bmzp6l73EFwtIly2TJ0qWqwXY5u4t88dVXIN2XdMqHJS8dw2D9+R2aJSc5k3A54HYA5axdu7YyatQYaG/XIIzTP7hwqvAPOnSGHpgCwEpIDYaZzT4Uq/UzGWme4VQH9j2woLKymdKpj+lzHGGjaUgtgSYKzVjLTKLZQj84cqUVGOAcJJoAnOTJ/juCWpCaxXiH5OoJypSbaw4rptpv+cNVBpxkSwLhPXrFpGK4Gg98choAO4NJXJzRz+dY2Vgx6I95D8/jGkdPdU4d3i1CWBpn9puZSZuMF4mco84ciLHSjfB8l9e5b1kWTLigYE5aNWnMNAkKDNE5VLNmzoSmcpt0O/dc4dmgJFjmicqkaWf68kzs3GlF2U2emcxgXjBjKB/DoMicB8j04ERcnS8H8LfllyE4t+z8bkd6clUHV60wv5mfOi8N72l6WU8iIP5OBYGmpqXqiDvnMLKcMH2YxkxPPsORSmpcJFxqwNSgjBxFwbThczSN+UQsiDEUWjDNU17Xt/Auyw7nLDI/OY2D7+k0Eg8UF4ZnnJl+1OJIajTJOUUqMiJSB14Yf21gmKhAUf/MZhWcNM601vIAFxKCso10KD78U48z7lStIi/DO0Nw7jsku5ObHuIJM0JGcU1rFKCVhtesFsfcc2cqM8tUGgoA57qn7+MeNRA+z0LPysDvfIefZp0hZ/tTbvOcalv4NNcM6ZG8SJbW1BJPBAZa5w6408IUbrOigiLRbwuUlRWKmauyo4JZ8rEC6ugpPtm/w9dUayPR4T1WHM9w3DAFlpWX4ZlJu6YjX+NkhMCnIThL3j17dqkJwxUJ438bL5UrVdL4831qV2+/9ZZ2Vj/62P90eouSCPwiQSjZucIg2N/HYFipOKKnP1zlwSI4T5g44ZrKZxGvlV6EN8HhWXrpIk0LTEuWDS0nrjyzrvE3845h5ebkan5TO+baUovM+Welq4mTZ5g+gCBI4kEMk7LjEvNLCVLTxzzEMmDizSiaMkfCs2DlSVFY8TOflFnNXsTbCo/haKOLeFnp4fbPnT543KQF4qeNLfySfJYvU8eKl+HU4owjOO8sp3fsQC0Kq6CWBUwBtODenaFsUEQTKgZWIS0Olj9G1lIl80nDLUPJZDUwJurDDz8kkyb+KXXq1pZzz+su9erV062N/poyRXbv2C1xMAn/nDSpYBI1fHE5wgrP85obvtL4eDKWLUiYReUyMA2ad9U4XqW3ds1h2249afnB3xbJgkXMpwdOLO7e5amof77hfi//OAqHn+Bc8M4WeucnOIN/MsHxee5W8u03X8msWbNk69ZtaqKz4FWvUU16XNBTBg16QKflUAMxMNXYwArP85obfoIrjNIRnPH9+HC/5ye4EsI7W+idL4JzW6xQgf+mxCspSkpwZQ2TFaXKjiI4ubgYOSgPTSeaMjTzuC6WgwUkNFYAq2/RXRn4aX0/FsGRXKxGqWQVu+zT5lgEx/BOnGzdBAe/SSBe244X1AEfBHd64E5Dn7UeJqrri4ewpxdlTXCnLaWZ35Y706DZXobyuYuG+cbeEdND8s8CCYAFzexswo03q0p4eJhOQubyILfm5o3jVQ5NcZcrCU7k2ZKBOVI8PO+VfdhlhzNVrpOH1kF+mp+lRpkT3D+vGhdOVLo8/M7TFowdv3THas2tZwysuX5OvB9gfMNvp6aLNVXm9ILmPAdL8OkVF2pFrOgBeg93cMsJUsvjdY8mntM63CPFjIkFfKcWxPhCm2OcnQHQ9tQ3aHau9cduzcATfKaYxHBpa6q1oUVXRcsz2BNGntgCmAaMF7xybWGOEAq0LuZLIJzJHz4H2TVQXtCLBchHXNUjLwQ63aO1bjC93c0by4K5ZsH7d1EwfwIKyhnk1rCN4w64Jl895eF3y1+343taPvGL4HfLEQEsp1omDNxngZxeeMaktCg1wdEDT8fE8c57KwHPNHhmrgVSUTpikgvtBMYZrAxkstfomUVUWvBsHJ3k3vyo4HAsRFqI6Wjm2PJcz9NsMRU+QCu8lVplDcrqcghbyQ3BZEGWHBQdh9NREOcCEw3mYjYecuB3Np7LwnN2TmdxkRxHFmnqmlFnVBTGC8/rNXhhR0Wwg/wy8DsLjlUuQAMhxaPS53OE2tMk9SoghUBCy5dcpHk2/HKANDQ0S9YTBMsiK65THOIIQJw4SqjhM3fx54pjAD6ZT4bwITXCC2ReQQaOtKqpj2f4lh3+2eGxAyKZtw1xBuUxrvjlyn80Fep4nw2HMwhpw10MEDdNR8YMeSQoP/xu/DIgzeSxiKgfKGPCqSaQlw2Iy3+Gk4ffDNSKldXI5NO5njElk+8ZgtOyifgwS5zK6vgOxy4HRNiM+DKPXUluveddV04lNC5ezjN9SgpNwtMBK4FYIU4cpzZlmXCWs6OyrzmQIWv3paLSh+NaEDLbs2VmZptCpgmOe4F5wWi9WbDy8OlExUCBQmXQvsZ8M6mVhYSFkY7fTz7LjgeLPE2bbw+ySZojUFYfypENR3PEERgG2Rgbhp8nOYjvrqx8WbQ3UTIRS0dIiKxLSJe5e5MkU9fSGzmtT2+wrpC8d6Xny9TtSbIhEZVRp4KYim0In2kGoipIRCv+dN5AWiHtku0BsnRfpmxKypNcm1lmdzJgVPOQB/aAcrLyYBbSIEVyg0JQmeFAngFOkB7yODsIBB1sk5wATlB2yQe5SXr5IDqSfw402WQQQ3yuQw5CzScB56EhcLAxhIaYG8QF8EYDohVAUnPgfi7CSrWFyr5spyTmBEtOYLg2oLnw3A6CMUToXcpZvgyh2fFsFt6hyyVJ64NM3wCUN/zI5758kBvh5UJ+hueQUDwRps5uM04bG9whmZPGbXjXNEQsmyLpgYhfYKjsh5xH7YivLQJ+heqzVn658/DUQKODz6Il7eRQ6kEGb9A7X4fOsKAY8MaJpJLpyHY4ODmWOziw7wftlVY4CyfH01ZmWQlK2Y9ki9z2xQSpFhsmr93RV6rmp0toHjQhzh/zCIevsnA42bKjltOgSUElDA4IlCBofcHBKAx59JX7xInkOO0oqGjlUUCDOE8Jt7wHAExW0JUNnPA+G/7FZwXIMyMmSYc61eXRHm2F+/1SZge0gpSAGPl84gJZtzdB3ryzLwgxQJ79ZpQcTcmRoXf1kSoRQToHryhM4rGqZCBub05fJxPW7pX6scHy9e29JY5posQQiFCC9LkQPBek5O4Z96J+U4ObdzBVXhk/R5rXqC7PXn6WxDlzNI1PBk7IkRAQLXd/OUoGdmgkA89qJkH2DOQpNFfU7IPBcTJ+4WrImysXNa8j9aICICdNVmrcSEOQX2JglExYFy+/z18G0rBLtt0udSpWlv6d20iXOuUk1pkuQSj0JBkbygHLbCZIZ2OmTUYvWiWrd+5HGbBJCPyqWzlWBpzTRjpWiZTyeRniyM2R4CBua1Q4LdgQOvLtkhUaLaMWb5F96Wg883Ll8lZ1pG1FNLzgOBIsuwBIzEv2HpBZ249CumANh3PkPBHpzJB+Z7WU+mHwB2mpOiZIPh/EloD8+WP9Xpm8eAPiBnK150r1ijFy4VlNpWedSlIFlkrhOneqwA0zfA8yMPdPtAT4KrlnGFA1UPEnT56ka/42bdqso3qnAqx6DvyXiExPRaGxoxKq6s9U9WRsgM8abYzFPUB2pmTJJzOWy8hF6yXNhhaUhQSVXLU9/O3NcMjXc9bLmNW7oSm5t7U5uWwrGciXDmg/29Oy5WCWTSpXrQqqobnDEI3mkIxGY8mOeKlQrTYqKGwWEHCGLVJSA9D6g5wMLBk9nRvcGLNGbKxUDQmWGjFRSvLUfNnyH8pyyldzVsv4NTslC5WwMAr744YNpm6gHIEfiajANM6Y3nSFYa7yzxesd7Ihz9ytO2RflkNaNm3Cje4Qt2BJCoqQCbuTZPD3E+THxVtl/PJtkBcmPPsalYhpqgfK3iyRV0dNlW+nLpaM/CCpGBMnlWPLy+p9ifL+hNny88L1kgItitVJJcX7KdDY/tyRKM+PnCzzNuyQsJAwqVe5soSHhsuCbfvljTHT5M+1u+AfLIBgaleeVdGkSwBkyIIGNW9Xonw3d7OMWb5d/li6WQ6m23USuEtEcAJN5gCZs2kvntkqU9dul0kr1svUVRsKuVmrN0g6Gl0niRh/7GOkZr0XZeOt8fPkuymLJB3EXS4qTCd2bz+SKu+Nmy6fTl8p++xhhRr4fwrOaInZ70Jy4xSF5cuWyuiRP8vRowk6M9xoO254/y6M4ipSUZgyY/60jw2FIU8rK/0oKFEgLzSfgWjVYJrkgcSOwEwdjRZ+/t5kEFiIBKICoSQpybHf64g9UMavPyjTtyfClAF5KEcz+ekvtFQQqtFyTTy08ALUCGjquH7iO69BGpC8ca4bPqASo7It3432OSdHmtasKiG6OJ4vsV8pRPYcThHoHtKiZqzEBKJl56x/yA2xNSyC3M7vjCc/WdDZ+hOsJLbcPGhFbeTLB66Xp/tfIpHUzvCgElyuTX7beEjm7EuXTJeZhISDs+LuDcpm0t30W7qfURIAITBsd34zjd2JwK90+QyfkQDSkBfzt+yWCtGxUjM2EvwTLIfywmTYgk3yzh+LZHdSpgRHxAj0KM1rXZYF/xlyFrSwnxdskAU7kqRT04by9u1XyGsDL5R3rr9UXry1H8zUfBm7fKOsOJAEkw5v0OxE0difGyCfz1kBUy9XHrrqEvnw9svl9au6yfs39ZYbzu0gKbmBMmz2StmVnY9w2YVBZ8XVpJ0dcdgNcv3yz7kgwjCpVrm6BPCsC4SpcVQ9DFYBHI2FhMxsCYkMk6fu7C+v3nONvHL3depehXv97mvl+TuvQQMUysRRPwKQ12kodx//Ph2aX4K0qV9b3rztCnn3+p7y+sAL5JlrL5bIqFj5fd1+mbBhH9LGnRf/FLCUlQosQt7Oo0wq3ObpiYGF2JCc+c4/zrDXDmc4frJvhuaObgQJrYhLhejcR7WZd81SGbSwvhze010t6C/M37xAG0w1aA5o3ZxBoagggZIeHIpWOVAy4U8e1yQGobKjAFJDykAhYd8H+3oyYfJkIVmz0IKzH8QOO9EOQstEOFnOXMkLhh/QSjJt4ZKLZ/IDTQWlqcSO/TzEww6/MgNDYD6GSxrMkzS8n6UVmynA/2HiUhPTwQ3Ej/FGTnrHix3JjMPidVulWbUK0gCVO98B+SGvE1qqIy9SdhzMQKudI+1rhcMsSyd/wEOa0Ej7kBDJgWmeCiJMCQqHNhUsWSGhkBt+Q04SHfM6AIQRFZgn5Ww5Ui6E5o/ptM6CmZQZHIwKbJNcJ+McgnghTRC3fKYt3mWnveW04535zEwDyQYiUkYPpDkFcxLaU2ZwNGRiurFvlESMEodnc1Eu8hBmDjTQLHrMvipNqXw5nJEnm/YmSbs6tSQgJ0+SEI8hk+bIz/PWS+Pa1eTdWy+TjtXLm7LERoldEvyES0X+zd56QCrFRsmdXZtJa1uG1MhLl5qONOlR3imXdWyKBiIQBHjY9N8hbZxo4Fat2ylHkxKkT6ta0qNupNSQFKmYnyy1ApLkzo71pUW1ynIwB2blgXRxQFumyCwHpFUldWiE6bY4+WXBRjkI7f+mHq2lYfk4lHGWEcQdZYVhaf6jseXg0MGkJCkf4ZR2kbnSJTxVukRk4DNHzg7LknPCkqVDZI6axJrFHHxCxVy045DM250iretWl2cuP1daBmdLTcSodn6qdK8cIQ/36SFhME+XrF6tW0Exa04HkALI98KO104UJoXOQLCQc1NA7vTB49i4Qyl3mB07Zoz+/vDDD3UvKzO6ZhY6c2eEDz74QG677TY9wo+HNf/yy2jd6NBa3M1njwW2jOx7EVSmRFSw6Xtz5NWZW+W2oZPlsQmLZfTmo7IPBTMXLXQumuoDaGGHzVsno5dvQsULkc1ZdhmyaJN8snCDrDyaLgdynTJ8xWb5ZfU2SUBl2ZycKl8sWCtfLF0nyxMSECLMEBS2zxevlaFrdmt/0OpMm3yyfLfcPXqW3DdmgXy94gBacpBEfqhqFoEgINOBHSxHQaoHUGnt3JvNqwTk4Zn45Aw5mJAsZ7doJJEkEmgXjCP7bRJRq9bt3QeT0iG1KlXANdxHJWcXgB3P5AaGybpUm3w0Z6s8NGqxPAz3DeTanJot2Yh7EGQxI8I2WXMkWb6dt0Jm7tgPQguUo7n58gvMqdGLN0oyvm8/mihfz14m38xdLWvik0EkwVqpCTaARRtB3PTU3vB99YFEGTJ/tSyKT9HBEfYxWZpeMCzE7dAWv12yRX5ds0d4KisHB6hh7k9Mkoy8bOlQLQqadTYao0BJTDwifTs1kdf6nidtysdCd+MIM583jTRB7ZnGduWQQOlWs7LUDOfvTAibJc6AXHzPkroVKkA7zpcDh5NRmZAeJB3kZ4wzVa7rUFuuaFNHInKhIyPhg1GegtHARIJhqlfkFkoBkoF3Q7TB4oE3roDx2wFteuGhDJm/4YA0rVJVrmhdD36jgSRtK/m6HsVLbCTT4X96nk0iw0JgDudLKO6HOJA2NPDxnhklNunBak8TNwNEuWp/vEhYoFzaro6UC0ac0Ajbcc8B2UKg4Z1XKUhG3ddXXrq6p4ShcS5+7uOZidMmrTVFQgtuCUDiIndt2rRRhg8f5joiMF/++muyDB86VM9T4MJtc3qTyIwZ0+WGG26QL7/4TJYvXyaHDh2S6VOnyosvvih33XmHa1daTpuAL6opGOcNSsfelBQ8O271Tnn1l79k9ZadknA0VVZuOyyfTlkmb0+cB20mVFvS9Oxcmb1slSzbsAWEnC9pWTmyZNV6mbd0jSQkpMCnIFmxerOsWr8FFQKkgmtzFq2UefMXS+Lho0rMedAaJ6zYIqNX75IpaNGf/eF3mbZouZ76tH3nfvl51kp5+ufpsjTJIZkBUaiBMDMkHGZviDw3eoY8PGK6TNkOEvfKzhyQ9LLNeyQsNEKaoYKGcqIIpwWgxefoXALub9m9X3p2bo9WmpUXQPpQngxoI+xUf334VFm8ZpOkHj0ku+MPybfTlslL4xbJigSHZCO+SCZogvmyMzVHxi7bICv2J0JrhMYFElm4eh3e3YDwgiQhJUUWrF4js5atkCNJachJmpAqZonAzRDS7E4Zu3iNjF+2GZWZGiDpx8TZgcblz/XbZeSiNZLMmCAOzN00xvHAEYQWKK1rlpcIaJlxjix54opecs+5LaCtZEo4GtIAkEYQp3BQKBWM5dUGrdQhb13bU+7v2UqiOc5Ms1fvc0ApFPHKFAfKUdXyUSB89vpDfwvIkx7tG8s9PTpJo5hw3ZfQjnR14j7LayJaj3g0blEgtU51K0owrkOfRjqhTMLrLCTqzmyHfDR+igSjNXoImlUcSDPfidYUv7kKxOyyQjkgCd7LhCmMoiRxQTGSkRUshwNiZE1OuKzKDJN4hhQQoZq7DenELpNAWCTUyFftPCAwM6R55Vh85MtBmOpLHWGywh4he1HGA0NDpWp4oFQMBhG7Ov7dVoIJvyzBxpe+lpXPZzQd0+zkYbyLFi6SG268UTeuHPLpp7Jw8UJ1NDtpjnKTyKeffloJ4eHBj+g20TwfcjLIkHuhcd8vbmrJ7WVKMt2AuzEkZ+bqvl73XNlTPrzvKvly8E3y1MBLYQIEydzdh2QaiINaRLW4CHnr0bvk8VuukhBUhiYVysk7D10l7z50s3Rr2VjKhwbKM7dfLYOv6yPRaAHbNKwrHzx2i7w3+G45p2lDmIWBqFgwUUCW+zKcMvSPmdK5VWN5/ua+8tG9V8n7d/aVC1vUk32ZTvls0jyJz0ZFCWJ7b5cDSSnQnNJla7pTFqw1p24VKAFANgr02t2HpXxUuFSCC0TBpjljh3aQi/qxdu8haHlB0rlBPUGjX6BFsZJxGsPkpcvlnNYN5K07+ss7t14ub9/VT85rXld2p+XKsPlrJCU0Rs1TFsY82LY5NLOhlrGQRkHGZ+66QZ6+6yqJDA2QNg3qy1uDb5MPHr9XOjdvwDfc4bmcBc/vCgYA2etUqySVYqJl/f4kybKFaQOTB09Ilol5ITJ3/Q4JCQuWLpAxAHnIeWrpoZGyZs8BiY0Jkxrlw5TEw512qR8XKhXysxBvmvq58IOaK3UwvMTwWHnxLwTpVT3ELhUCs6EVkQhpNMNERNhHcgJk+dbdEg4N77xm9UBUeBvlywY/wxG/GBBnKNIkJzhGDgVFS3xItKxOs8kvy7fL3gPx0rVBJakXCu0KcWNgTA82wDkgn9+hzafi/QHd20mDcJBpPp5TTY9dMlYK4ZOEh7S3Q0u2g6gCkSeTNh2Qp4ZOlMe/GilPf/OrPPL5ePlu6S7ZgwYxx2G2rSdBpaARS8jJFu2WDQ6XsSt2ysOfjpHHvx4pD372g9z32Sj5eNYa2ZSeiwbEdBW5oYlkvpYxytLX00ZwrDTa8JUQzGi2ENxZNjomRvckQ5uhy4T0nFGQH7fpZnfssGHDoBkdlQdAYjwEmQvAeQAyd8F49bVXpGmzJrJs6RKZN2+e+nss8G4uC0GuXW44u730qx0mzSVD6uWkS59a4XI7WuVsRGT57kRUrhCJQSWpA5Olmj0dmp8D2kG21EZBa2BLlzgYSlE2u1Syp0g1aA7BaIEjoEVVgwZRW1KlQhDMB1YqdnxBLjvMvipRoXJ395bSPiJLGjhSpENkpgzq2Uza1qkMMy9bNsXHS2ZehtiC86RWlTjp1b6pdKgUKf27d0FaGPI2xGGTZJiu2xNTpX6VGIkOMVmto75oiLNBYMugmUZGREujclEwR1zvIs1Ve4YnbRvXlNu7NpFWgWnSIjhbWoemyuALW0vdcmEwbQ7LkoOpkovKSbOFNBcKFwJHRYjaSTVHmlTLs0sEtMUoVHqeu18T5lpULjS4AMZdgyxaNvCd5qvplzJ5EgDNs2pEoHSoXkGS0nJk454EpC7KAGTlVJRtiXY5nGqX5rhfLywXxIR3gkJkV0au7EpMkHPaNYImlaWd8TpBlxq8SxlzBMH0g4zstLfCowwkOe1T4zWkh01NWM6pC5YkW4j8BG1x856Dcla9GtKmQjg0OLwDLQivqT8knjy8M3/9Hnn8i9Fyx5BR8uhPk2TUsh3S8/zucjs0s0oc2MFrHBQhOXIi8n6YsaMXrpHaMcFybsNKEgNTmENdKhicWWXC/FJJQVCQCQSXA55cs2Ov/DhlATT9IGnXtoXUr11bDiC9hsxZLUOmLZU0aJ20MtljwwYwA2U9tlIF+XXhahk1e62EhleQnmedJe1aNtV+5+HLd8grY/+SvdAOORDCVSAc5LHcmY5SExw98HbGFHU7nStWYjDjrFYKmQrHrmJznWUO/uErTRY6Lgbftm2bREVH6Q6nPL3d/S5a67Awuefee/U8SWp21PjcKrZvuULDQ6RiaL40hNqufTN5OXgfrShsgGoRERITEqaTLewImy1qfl4u/oepCcIN4waRCD8QFVscOdpfFoISH8QCDJGCkDahqJA6YQKyoDyjsnH6ZYgEBeTIDZd2lYoQPwLFnkWImlUFyN6lXkXJc+TK+u0HELMosdkDJA6ayBPdmsiQa8+XttF4kGYM7uah9LISH8zIkPjMTOlQH+ZpPsxTjS77ZYIkESrcroRUqVYpVioiXHbJk9hYhWnFhsP1alxfohC2TlKGhOFBoVIl2CadWzSEFhggs9Zthjlq8oVEQ62Pk16Z/CwDwfgLgCmZl8thBrs47VnQVuww7RAWiFHni+FZyx0LSCqY0flyYYcWEgiNaeyiZdBAwpB2QZKL9Fx/KFXsOYKGoA4aHYQH/50glxXb9kie3SHnNKgj4cER0H51aATaLMmMQzWQJQ/xhiz5+WZ0nhONLXGYv2y4aJo60CA5AvMkGxr3xM37ZcyiLdK4anm5pVtLqRiCZ+EHBzqoHTtImAHQuqDBcyQ7ILKCSGw1yYFmm5eTAetgm2yAH9nOKKQvUh+ysk/xcK5T3v99qp6G/8DF50jdMJQVkBLEZtaxNEI+lDdqni6iY4PM8yVCoE2Xg//P9+suX15/vrx0QQN5e0AHGXLnRdIwNlDmbNklo1duVy073wFCTIcu6oyUvbACFu3eLw9eerZ8cO258mSXhvJGz47y6c29pX3NirI5IU++n7kOBnqgnl+iaYSQzY4kZzbJnQjzlApsBbUlLOP0IMHxxCnufkvNrjBQmMEg3G6cEwePHj2iBcMiy+KRL2GoROEonBSXxUhbZHzq6CIfwVXrmv5GBafmwh8F1/AMNUzzHdfgUcF3/d/cI6nw/XIg5wZxMCVBmNTqApwgCFBPEEihYSWag/kSn5KFCh2uBMIBhzBnjoTj+WCaTyopYoeKkgVyWbdnP37YpWPduiBVaAcaYiCsPZvsTM6EJpQM7a6cxEJwEowhJlMogqHe1I+KlGASNSot6B3yhILMbdKyUT1oQvmyLyEFjQwbCr5oND/9RJqb/hl88n8VS/9zgd/pfOeDkdNAv8OTAFZoEEODynHSpEZF2YGw45O4qI5zwEJk/lqYiigLnerDVASpEg7Eee2O3TBPY6V6cLA4sqDBwa9cpKPdxaj8n31tOiUFv6jHcXCB8eBIMAcC8hF3p7BRC5Q0kNUSNAxfTFgolSOD5P7eZ0nTCIcE5aUimZifKAcwYwORdzaQaCDIp3eTmjLkpovkhxt6yNj7+8tL15wrR5IOygdTF8jUwxnQRBHLwCDJDAyXuZsPyfrdGdKjSV1pU6MCGsRcyUa88qh5oSywP9MBIuOEbDMNhiPQDqkVbZO7zqonL/bpLD3rVJXyaFAi8rJhJqdL0/Khck/fHhISFCzTlm+GZu/KT/zprAN7rloCXZtUQWOaC40RlgjM9rrhNnnwym4SHRYk244kyVHOYAgN0rKC9h6OqWfl1JmJ00ZwVuUxhf3kYUwLemIqEKNgTRExi8H5jDsQtsYkNy4YJxnqKJBWvuLBtZd8Tss5/zyeV/MNn2YNIwcs2NqzoJ0cPNMkFGEGw6tgDZvkigKNipdPMxAVnEU5C2YsxPMBSKUqGioYKgsnmk6FmdMW5FYlHBoA3iZROEGcDmg96+KTxZGbIW3qVcUbJH13mlEeFuKYcC7rsgKD3/CfcuWzawDpkM3TuSArU6Dgj97QqUZE57rmkUSe6ekL1l3Ka4GVMRL5GIWKd3bDKpKCirn5cKLYQ8J1kvWWfQfl/NaNpXoYnkT8qKcl5Dgl/miS1K9cSSqjRoaCFBi2E5FzMGldflswOct4Is1x02hzeB4tM1c2ZINI5+5JljdGTpaKsVHyeN/u0qZisETgptNGEsxTjZ2DDcwvTQrkXUhuslSwJ0pVe5JUhYneuVKkDLzwXJ3O8vmvk5GnKLdIr725ATJq/loJCo2R885uK0eQ9PuCwmVvSITsgv+Z0ECzQJ6puHYwIFoyoFFzWlEo0qV+uTi5skNzaVsrXEKdaUo+XGnDkdBo5G9jNmSwclIRRmIW8o9Te6B1RoQjXcOCpUnFWIkM4ASnXHHAUnDC+giF5VIDlkzl2EhJyM6R+PQMlB2TKWoyu7T3Mxmnj+BcrjRggeMAgKkgxpGIIqOiCo5P08rkBZ4/mQ0Vns/xAQ6RFw8WanNf/YKp4RYcLbTru5oxuE+tVHHCzF3gKWDeTcu1SxrDBkEpI9hojoB8AoIlJRsVBmWqYgy0qgBDOt4hmvlTuAqNbMfhdEnODpD2devABIPtBvlURDxjDwiRpVv2Su0K5aRRlThcJMEV9o/xSszKkVwEpY2CFmj2t+VLcmo60jBPykWHi0PJjvRjyMPqw+N0CS5YZ3ppftEWB8z/Bt7yW+AzdNZ96kXUODgKGAaNpmOtcjoKvGrvQTkATWnmhi3QzHLl/PaNQIBIM4TnQHi7Up2SnZ4trWpVkUjcZ5paUyUCkM6eslhQksP7TEZmhSYnyCAHl1ceTJGv/pgj2fZ8ue+yrtKxRqSEwwzlSG4+VzLo6HSe5OD5XZl5sj1bNK2pdVHzRWaCAJ0SB9na1qoqMWiQ06Egp+agLKHhWLM/XvajbGaA7N4fNlke/3KMPPL1r/LoN7/K09/8Los27dHR4y/Hz5Invxojszbu1vmT+dAUE7OdsifDISk5ICdktDWFhpo+15yGIA+ZJ7qULAANQG62VAxzSq3KsToKzGfZNcH4slOImiv/aMoGhQTr5gccCGNZZDpy5NbhKodnMk4bwZUFkG1GC4NZZJVOam01ataQpORknRriPUpKMuOhyqyQjRs11srKvfePDWQwQJPFAslB+zzgzHWSHYRAAWKIXFbD3yQGbrXEAkAfqAnpu6w0SG5WUpqfWr34nR98AEiERrRwy35J03IDPwIcamZlQf9awuF8mEj1KkVLmI37giAt8G4mWvZ0FDpOvuU1mi3sD9u0Jx7pFC4tqlRRk5EBBWqBt0my3Snb9sbriG6YM4u9Yyq3NXGUAtO/2Vt3ij00SqeCBIBdnQF2yQDjLVi+XitDszrVSXuoTKZRMGcDIN7IA2ouJGduucOUQNQA5hsCIiAn456DcDglhfFgyip4Q79rwjEVEQ5MTJAAl5o1rhAhDatWkBVbdspu5MdKaKNV44KlFkyxgEAHSMWpI9xr9qVIMLi7Vc3K8Mt0jgc4kf8ghaIFn2mHD6SVkrW5qLJnosxsysiTIRPnSg7yjqPp3WtEQRakHB5gupp8pukLDQna8+uj/pKnR/4lh3LDcC0KZjQ0PCV5vBASInZkHpfz8QBmu9MuWbkcGMmTSmF5UiGcPbo2EF2YZOaFSDZInGtGAxA2D0LipBJOKM+G2WqD9sbugqnrt8rjP0+QqVvidXUCywFLnE6QtoXJnrR8SUjOACHnS0woCc8Bkz5dGlUrp2VzV1KmQGcDaXFkmu9DR0PeJEDVPZySgTInEh0cAqKG/PjOeXpmYMaU3TMVpSY4FgBvZ/UNWI6tZclBkQo7LlrnwbdM2507dosdlczMYUO7Hhwol1x8kdhzsuWdd96WPXt2K4lxKJydoPMXLJSvv/pGIiKj5Ior+uIe/OFQWnFQNqKpYVo1khILL2mMegQ/g1BxdUkTW2YUOpRcCUaBYLj7M9PlKApAFlpx7vzAeXDBrJgo4BIYJrvik2BeBYO0QlBZzLQKB/yz53N9ZLj8MW+dbEx2gLQixRkSJ9lBMbImIVPm7k6UmMgIaVu/OkwJEAdazywI9uv6/TJ0+VbZlgnSQ7jwUtfRbj1wiPM3pX5siATDf0aL/YeoF7Jm736QfK60qF1R/SKJGNpmepME8yUHlXHi+n2yO9Mm6c5QyUFFywkIl+UHsmXt9qNSMThMujWuo0THeAdCa0Q08R1EqumP9MDvoGD8RoMSnwYiDebqDU7vIBlryZDlh1Ll+yWbZdKWA0rkJnxqCUhbxI9TMgKgHZlVG9kgqDyJhbxXdWoD9Uhk4qoU2Z6YJ13r15WKeIJtHwc77PlhsmDlBqlXtaLUgDnJlRssMtrfhufMLhoEfinZIiwmHu4HOyC/3gfRQIbNMM1ehdZ0CH5e1aurdKkaLTZocbb8SORdqI7mZiPyOYEcxAhCXudLwwaNZFtKrnw3e5kkgYhyQ9CohcCsR7pwcvaYheskEdpYywY1pXK0TcKRRr3r1pARt/eX0bdfImPuvlRG3nuB/HxvL/n5rl4y9N6LkN6VJMqZKY9e1Fl+vu9yubRpJQkHLQUjIapUqigJdpuMXbdTDqL8ZgSjYQwJkrTAUNmXGyQ/Tluq8xM7NjD9bFQSIkCVXRpUlSBHmoxbukE2JWehsYmEj8zrQElAPflx1mI5mpYhHaAF1w0FN4PU2HhzF5MglHuWmjMZgS9yJmwp4Ct6PJquKKwCdeKgabp9xw499Xz+vDly9GiirFm9Sjp16qTTR3iO6boN62XRooUyccJEPXVq586d8uMPP8qHH36sZu3Lr7wiZ511lvrHHUngpRKCwvXJuKRDJf9l8SYpFxoql3RoKdEkM9qGKLSBILMDWfny1/rtUr1ctHRvUk2nQ7BS26LLy69LN8kBWEKbDiXKAZhG4SFRUjEyHNUkXxJRUeet3yF7UjJl8ZYdkuTIk5DwACkfHYSKESAjFm9UwqweGyfj5qyQ3bCJtmVxsu1e+WbyfMlASz+gTR25sFkttKbsVrbJThDfa+MXyMLdyZKTkirnN66ly8ziUfFGz10u9WpXkz5Nq5tdPBBhVuwMyPHzkvWSBdWjb8cWUhUVWDUQSokKkIpWfAo0tGSYTVzGNHTiTNnrCJZt2cHy08JtMnrpGs7llz4d6sllTStKUBYiDI/XJmXJgo3bpEH1StK1dpwE5lEzdEgaSH7xtgOy8WiWLN6+Xw7lOCQiIlqqBnP0MFjen7RYxq3ZJ1t37peuqGzlItj5nS+7MnJggu1EesRIr8bVJDI/U69Tn7PlOaRcXLTMWrddFuw8qrtxPNC7vVQLypZgaBbIQtmT6pAf5yyXPp2bSrsq4YiVaZxU01Z/CHyistJAnwmCjU9Ol0ua15O6UdAElQ1FjuLNZ8bNlbWHkZ9xlWXf4VSZD9Nw6qZ4mbL5sPy5/oBMwvc5m3ZK20Z1JDaIqwicUq1GTVm0eausik+HjPslO6aSpISWk/kHUuTjifNkGcKrGuKUV265WKoH2SUA5BQMwuB0nTCQeBjKXUg+woQmHE5VHaQzc9tB2Z+QKD0a15U20Wy4TKOrpjvK39ot22XT4Qz5bdEqcUZXlcyIyrIiOVfeHz9HtiQkSeO4AHms37kSh6aEujCJvQLIn1bQrK17Zd6GvXLUGSFZkRVkKczxD1HuVu1KBLEFyqNXnic1Q01fMBsJSuSqNgBrjvtXacC80eMi0UiVBU4bwVGD0CRw/1diBEEtr1Wrph7jt3XbNlm3bq2sX79ebr/jdp0qQhX73G7nQsPL0+F3TvLllJBt27frwciPPPKIXHLJJRIWxjlASELKQq3FEoOf/I0bsBpk6tK1Uik0WHp3bK3ztwJAKFqxUCgSshyyYO0GaQCC69q4NgoiChkJAi1eXHSsHDpwUA4eSZB9+/ZJ02oVpFZcqIQi8pEhwVIZ5JWUcFQOJqXIvj07teO3aZU4mF5BMmrRJrTiwfLIdT0lOMMhKzZtkSUbt8ruhASJARHe0KWJDDynlcqjqizMh9x8ksceaCa50rN1I2lZKUrygkJkZXKeTF60VPqd10laxrAo05BEJBHHo6goI5dvlrjgfLm0dUOJZfw0PaAVw88cyLJw5RrJy0yV566/RNKhGS5ev0VW7dyLyp0gNaERDujSQAZ0qiflnJwkCtMLDcCB1CzZtGmbtKldVTpCMzSNAhuTQIkKD5UjqJiHjyRJ/O4d0qxKeWlePgbE6JAdyZmyM/6w1ABh9enYXMK0XOfLobRMWb5+s9RFBTyveW0Jzc+Fd9QYuBie2rsdWmuQrDqQKk0rR8n1nRuBXNAYIUw7NKap6/fK+oNJMrBbC6kbzhFmeoybNBM17+l4jc1PAMzd3ZKalCQ9mtSW6jFh5mk8k4ZnRs9bye5HcaSnSVZaCky2BElAg3I0LV3ikxCvlBRJTUxEurSTcJjIHLnm1KBGderALDwq2w4fQVy2y7zl62TNlm2SkZMrXWpXlrt7dJKmsWEgNrtLHmaE29nYxwVx2YI4AkJkyVY0jEcPSo+WjaQeZNSNMmktQXsMQbw6Nm0I0suRg6mpsmLbfpkJDXbJhi16/mrXGuXlnp7tpH5kvs4RDIRWTHrkKG19aLkVYsvJpn2HZM3WPSjfG5EeWxHXDOnesL7c0/ssaVQO5KtpZdKOacN0tJyhvNIDvpcpwcEaYXU/ebCoeYLeHevQGSYOo3EiYGJyONsBgqM7cOCAlCsfJ+XKQVNwERzBfrYUFLbNW7boqgaeet4ApgIPweXIookqW20jg2WlWETHjtkstIbxgTEShvsV0LZHohJzPZ8+D0JJDgiTI9DkwlEwKtly0cq67kFT4UaGR/A+TYW83FypEZQlFVHpIuk5TKRMmKgJMNHic/E8TOp6kTaJg3mQHRwil330m4TAhPvgnqulGkLcnZ0lO0BuwWHh0qByrNQNyIBZwHl1gfhE5iNBaQYfQpipGelSFVpAJRBZTnC0vDh1g2zcvknevfdqaejAe4gfR81yEeHtucFyx1djQQgN5MazmksM/IQ0Skicj5UOMzkJcuYiUWogbqlo63fmOOUAzJdIBNuoQrRUCk6XYF20zQXvTCmHJNsiJMMWIuGQq1x+qvbBcfoIO6xTYBenhcRIGjRBZ1a21AbhVMnLhqkKIguIkH1ZeWgAIqQmKnSYprdTUoLCJAVxC0EdL2/LhDkErQNxhzGM0LIlB6bgewsOyM+Lt8nDF3eQgY0qSHQAzHRod0nOSHl7ynLZGn9I3rzhAmkYzJWp3G8N6UCCc4HERtnZSX8kCPIjXatA4giERW2KAwZp0K732qJg8vI3XoL1zD4vTuoNQcLauWgX4LzB2iibQbYMJR2a2XZofymhIdCq0mTj3iOSmpomcRGB0rheHWkEzb0y4snGT/tNlTwIU7EpJfs9ufKEcuYhLQ5A43WgHJdD2sbZqUSwcWLm8k2OawZIJshuf0AUtOV4OZyUjnQNgRlcVVqEBsG0zwBxoLFGXAIgH3VaYdcIvmXaImUfysjyjfGSlJEl0VEh0qxyBWkUF4X0gF4fDDkcRsvX4FywUpONZFmAO+RUqlxZzwEpC5w2gnODSeIuZCUFpeQAAgmNnzxxnWRHpi/wDYnPDm8WYj6jRIYCYLebjTIteBOcJ1h4ndCkbMhMrknlGkVhS4rSrbuMsKOJl2DsBUCT4HwgG4gPRdtM7sQzThAcJ/YGohKHhMBE5cAIwmIRzoa5kY/KFIwSYbNzQioqUVCAXPLRHxIREirfDB4olUACtlAak6BWkCF80r2F82w58IRzrAzB5SAsBzTHwIBc1dJsuJeUFybXfPaHtG9QTZ68rIPEQrsjbKgg6ajIY2BGfzl7lQxHOLVBwLrbGiss48GKhLByIawdBS0MaevIg+aE9GCMA1iBQ0DkdpqCSHemNUiHBMmROQ4AMX/y8qBZuFpgpnF2Hsw2VHTdPTcvByQAeVFJ6acT5J4FfwMhn9gDYd4hjniVE4kDg0IlPxfmG4J3oLJzNJCdjBkQ9qAjUF4cOVsOJGbI+zf1khbRoepvPsKKz4uUwSMmSy1or8/AJKvISc7II0Ln6LEsWXmP7+xHpDnNiR0hwdDyHbm4RoOYc+ycaNjCJBCNJNOEfZh5kCUYcefaTLudmiWzg7olQRKAh0hHFAYUG5aHXP3Mx/Oh0Ai1jDk4bJKPcsDhD6QDX1GYdKOfQVrsuFaZ5Ycd/4F4w3QncNI3rYagPKQp7uv2XZDBFhIpWTk5uqyR04kCqGHbkM+5SD+UF0RLyyxHmlleqACS4HR1B1g7GPngyMGLPKQb/gXoDGM7CCdQ7DwUXCXzhMa+zAiO6ccNL0lw3iGdDExqlgL0wNt5Mjzhi0hOHGjHWEhoEsI/DjzogmNkAgcTdFY1M1ivoTJCGyExMPE9yc0T7GcxjruA4Un4yYIdrIUPhQimA+dMMVNZMBg37vwQisLEyhrgDME9OpMZLAsctQuHgFwkzQXNbH85k93JCo8CGYoSHcp+O2pM8NGBewHhUSiQEZAdRRdlS0BkrNB2xIcd9kEkHARAqdhBbyfRsqJqmPCFE1tBbDl5EbL5aJqkSY40qF1eJwHnogQ7YF+xsqbCv3nrNkn96hUlDpoAp3HkI51QKyAHYgYiywfZBsP/MBAMCZwL0EmeJMJAVAAnCJOTe5muZhQBFQ9mqINmPL5zRJYygkmU5FgdQ0nCkFPwLmmD6eWAGZnHbY94H5oD+3YCAlGZSWbMNqYcGgieLcBdZfLzuE1TtKw9kiGTdqTKi38skY2HkuScRnWlcWw0yA0Jj3IHKSQ1N1viEw7L+a0aS6SmM/1EY0AHmRyQnzJyLasT6cBrAhMwkPv0IaPzoEln43oOruUHhIMYGA9O97XBVBY4/GaZY+wYN6YlCIDbaOXhO/sWaf6yzLDCskM/BAQZjGuUka01/aQM7BJQmZCcdDqbRGPPCck0tzniDs0NaaZ5hTKtKxGQfk7kG8/CoPmaB8vAaQtFWiHP8A4JJxh+BSJdqY3agrhFFRKXmhs/6R/KEAmbWhm+IhS8h8YpEGkZBBbMp2M5Q0PDSc42TnmBv8xDNmoaN8Sl7MjNDXppQnC7kwmm1BqcN+idry3LLZgOSo8LJYAvES2z1BOWZuYJ827h963nKCOndKCo4S8QtADzDBqTmtG4zikmLJwFPuK69Z27Quj+cS5oKAiLftMpEfNp1zPWk5Yk2neFZputsx2kd/f7Y3Sd7ZsPXSmVUMqz8znpEpUOJZD1ndEwVOsCf7t+UEJqYQzrQFaWrNiTJE1AcLWiadKR7KFRIRMScwJkyZZ9ula3U9Uo1Cij3RGskJ5L1zi9g6LrkiC9TskZoBUDxg7XGV/8MhozCBpxYjpYfShW3ll+cP4gKxO/u9PKvOMJPkdyN40XnoW/2aik301ZLFPW7ZJU5EvnRrXk/ks7SS34lR8IeZkEqMwHknNkbXySnNuwhsSE0ARjuDSlkVYathv6E7VHQ3dFnyPC3CGFF5kGeo0vukSkBkZxaUVxWZwpT7jtUsNc3ihM3PgsSpkrw5hGFiz/+QxRHFnwOTPdB2UG8vI1611P8BrbEsbB8lMTpsDfwi9Z8hEc+db3EXde42UGyevcaYT+RDvsaDSg9XOqkjb01OB9CHKS4Aht5Yq+TVSGcqIhnTaCK/iJGyeaIL5EtAqVJ8w17+vuDLRQUCD1B3UbajcB8sHwXyUhKA7yonWDPzQtaXIVAO9ZvtMcU3/0grmOkMx3/GAh5n0rLPO/6xn843ws+kETBI2p7M+ERoNnK0cGax8Qp4FQA+Vz/DNp4Lu11H4RfOah8EGVkFyQK01lhk1z1oYwyDe5OZCJc6fQMtsYN+QFzRV66WCtdNV+/s9UIXTVQkGNRaXRp/mNF00YfF7nH+JB3asMsnKFgwWSPTUdjQOdpgkJkZoD0hnXiuSx+sF3+B3Pwv98aBJ7Uu1yOIu7KOdLvWpREheQo3ufUUcNRs3Pd0CDgmlIkzOSlRwaIAkuTyOI5KHMVuF0fTAQBkN5eIs7+nLAyqQ1HyJhu+THT8aV+RsIy4BbcNFwJMzqFgMrn/jB9wKpHbvuayOg30wZ0W8+3vWEppUSPgmOjae55g3mhjYOaADcfpo4aKBer/AZ6znGkX66txXjNWry1DaZB3Y5t15tubJLa2jlHEtHuQLBFfG0FGB/ZKV/IsG5M+1kxCwZTIaX3G82bOzP4GEwKSC1aeu2SnJIHCoFCyMrKwo5Mt2XlwUEB/BTv8M/RpNXOeFVr1svW37gAX4luVBD1A5phM9BCmoGNAPzHdSaKBsLKTUr/DB84xP0j2lM80TNSBQ8mp1OGMMkMM7pQ51X8tHRzSCH7rBLrSgE5i0nkHILJbd6Ywq9BsvBApKVK/+sqqkxg+BW/FipVA54o+/yHV5gmngQnLln/NBVD/ijn57kYIIwWqD1jk5lQYZxLzNyq/ZpoRFgi5/HNbsIIwTkFsixPoSbH8iBBbyTz8YK+YU/Ighh5oP06b/lN1/gM5rO+KdzKBkRC3iGZKtH6eEBkh/l5fI/J0w6fU8fM3HQX+Yr4JJfCc5cpt96G/8d+10DvQaRtSxCBt0wglcL8stAf+E/zWfGweWnG/xd+B0+Y2megdAyeZ/x06jieYvgOGgUnJcjTcpFS5sa5SXURoJD2dC0LEuU7aEz/2mCY2JSTpIM85MaFDdRNGYHNSzTn1HES8RFCc7SePCeho3rKC68gnQonuD4DCssC7qeGYowbRygADHZgmgegVjxx/dpovGP9AExfYLPMY15che3UQpiZw61UBAC+wVDYObmocDkIm8CUCgDYM7RzGHfHMktyME1pwjRkpFgscBvtuYF8aQcBcUFv0hwjDfAqSK8bxEc+0vVA3znGyQzXtfUMa/ouyaOuF7gr4EhRRKc8Y/z1XRUFiZzfkiQ9qMF8RnkFaNLbSKQG4FyEAfP8LxPkl6wM0RNQ0cgzHQ8ZZEqQWn0e4Fc+I5/howZEX3M/Z7rdx7umYEudjOgkpvL6h9hPadwxY0Ep9mHe9ZSQH63wrRIhrD88wTltKY4GW3Z9a4X+JzVoGgAhMeH9yskaivt2SXA93UTWT6N62yoApnPKDCBaEA52EG/zT58yBPKXVzBPCmcYQTnHTV6dypGUUsCk+HH8rv4jLAyVAmvQEYUKjhPHzWxrAJqAeEy47k7r5q0fMEzWVlAXF8tmGR3PcPeaK3AIB1qBPBD1xF6lMZCzxeCaUF5RwsrSU1/gxzwnQ2LdojDK9PQsHLgOb3miinVO4LPmivmNy5ouriu8X9PCayn3M/RX3OlUOXDRf5mHCzfTJqYZzz9dMOkMfsOKS/eNr/xk7+43tLa2cWcM8vf/AV/C8LGfcaTT+kzpwIn4q8l1z8TLEvaP41014OQNA9cN8sMZ9go6r8FVmKaemB+8X/vRLYqmic4ATkjI0OnDKjm5rpOv4w7TilwtYA81CM5OUUcOfTnOO94gWEyM6kZaiXn//qdBREfKDhKbgQuWPdNfxSvk/io0Xo6Cs8XDLwl4m/3c5Yz/ng66xl+mt/mWSucgmeJgt8uv6DZmmdVbPMIvnBqh0XGrGQmrgR+FMAVd/p1ymBkKJn7Z4NtDZsopinrQdmTW9njNBLcyWcyTSFWeJqFpuKfisJiycdqY/35gvs5y6WlpemW6P/73/+KWaZWFEbJsPxAwUG8fv/tN+l14YXq14kS3MnBHYdTj1MdHxOPQpqjH/9IlGUOnjaCY6truRMFC+2ePXtlyZKlug711ICVg6NInFphmaa+ZaU8ns4BDW7btq26/lXnbJWInNzv8ztf4c7EXImxctUq80ghHN9Pt38nAhN+WcGXDNZv657X7WPC/c7xHE1TFueyi4sfpx+quPPT/Cw1ThvBkdcsV3KYh9mpOmzYULnt1ltkw4YNOrveTGOwXHHwfAbmEFjk1GtGbv8L4nucOLOCsu/u+utvkGeeeUY++eQT7WB3ozQyHy+NSgDLXPTlyhJl7Z8f/3mUmuDogbfjiJznlRM7k8GARIR6r5oNO+954LMzj8t78rRDn6Rnma4kA5IERz1JBjqKxgXMSmim0rB/zBCFITn6S+chNX8oeN8BrYwjW1xSk4dwOZrIzR05TYH+m6kO9BtO+93cv0m+nL5AmUwYuIp3CfqtI5MIjvGyrhO1a9eWW2+9VTp27KjvEnyeI1nW3CnGuWBuHp7hoAQndeqEZLxizqMwUK2GRKl+0VlxLRpn+hkYFITwnAUTPhE6xwLUb6YtZSkKjtjZJCg4yIQFcGY/w9b5Wpo3lnYFv3R0jzB5ZbZVMo55aoVtaWUcpdQ95ZBOZmQWKEKExm8//PBGqXcT8YX09AzPuuPWYqzyaT6OCUNYeXLkSIKsXr1aFi6YL1thBjZs1EgyMjPk4MFDUrVKFT4piYlHYb4ukbCwMN0+KTklWX77/XeZPOlPOXgoXipWrCDhEeHqp+W3JYV1zQ1WYkOCWZmZsmL5cvlr6hSZO2eu7Nq9W6pVqybhYaEFlZnIzMiQX375RRf19x/QX8LCw9V7chfX7yUcOSLTpk2XKVOmyOLFiyQT/pYvX17ldVd4gfl9VFatXqWDFuXKmY0ISewLFy2S/fv3S81aNeXw4UMyadIkmTp1qhyMj5f69RsIN/DkodhMn4kT/5Tp06frYddRUVES4Yo3je7iwLjy+aVLlqrcTMMVK1doOLNnz5akxESpUaO6rrQw6VMYuQh7+bJlMg0yzZo1S7Vs7txSoUIFbXwsrFm7RrZs3aJnZzDuBEd+HXaHxnvrli1Sq2bNQu+Q1hcsWIC0SUCaVdA09smzfvwrQEXhjNpNxBv0Lj7+UCFTVEf6Xd9ZPzxuFQv6wxZ97Nix8spLL4MUMrSys/IFhwSj4kbK/IULNCFmzZwlDwy6Xx597HGpV6+uPPXUk7onHDUv+lMBBPcy/Ljggh6uhDMaH2FpFga8ZgYz9u3dK6+99hr8nqkaDB/n/DQSz0MPPSgDBgzQCk9/jhw+IgOvvlrCIyNk+PDhUg7kRT0uN8eh8n/w7ruSkZ6u86ZUM0Qobdu2lWeffU5at25dIMvcubPl3nvulmuuu06ewz3KmpOTLZ07dVYN6YsvvpDHHntMjiYc1S1wmD6t8P77H3wga1avkVdeflm3bec9TlatV6+evPvue9K8eTNXPH2nPP2ZPmOaPHDfIHnk0cESjHh9+P4Hmg4OaJlEoyaN1XSmn0wM/jF9E0F+b7zxhkz+6y89vYpy2nOpVQbIbbffLrfddrsuDWMUP4Cc3337nTz73LMycOBAlYlhHzx0UHr36qWy8wjIs88+R9OE2uTWrdvkisv7yFldzpavv/5KtUxdg1wEVtz87PdPBidTV67sex7cyaBsaLIE0G6cEpIboVoH3Pnnny9Dhw+Tiy+9RPeGf/qZp+XHoT/IDz/+oK05KwhZn4Q2GRrHc88+q4c9//jjjyCbn+Sqq66WQyDcQfc/IIsWL6bH6m9R8BodT59PkIcfeggayRQ1Fz/97DMZ8fNI+d/jTyAkm7z04ktaEa1RXWM8GlK2wO/U2Eg61FLeePMt+WXMGMg+VPr27afntD7//P8pQVjIycnVY9loulp+MQwSVmpKqjz33HNy6aWXytBhQ+VjkE2zZs1l5YoV8uILL8hrr74q14IYR/w8Qn4aMUKJc9PGTTJkyCdKqsdDnsOJcOwybtx4GfrjUHnu/56TYT8Nly9AKm3bt5MN6zfIM0hbmp3mUB6bpjllGjdunDRv2lTeevtt+Rnp9MGHH0psXDn54vPP5ZVXXlaNm43D5ZdfoV0FkydPNimG5GZerFu3TrXaXMR/0qTJeNbIS7N4w8YNkpOdg3zogDC5wsCdxoXAFtVyfvjhwmkjuJMB+3LY+rdt206qV6+ufW9169eX9h06QCtprs9QkzBF3iarVq2Um26+BRrFm9K+fQdp266dvPjSS/L4E09oJf/6iy9Vu0At0Dd8gcTCCrsaJlP37ufJl19+qZpfq1at5XZoJJ+AMCIjImTETyNU4zAvmQ9P0J/kpCS55OKL5bvvv5fL+vTRnYe5q/ALIKT2HTrKtq1b9RwJT2L0ht4DCVCTO+ecc6A9PiQdEP+LLrpY3nv/PdVo5syZI/3699ONPdu0aaPuhRdflIioSJkxYwZ8YaUvWcXfv28f0u91uQoaKcn9vPPOk/fee1/NykULF+pefIwwSZijvTNgejdr1kw+HjJErrjyCoTdWi677DIZM+YXaQLSmwENeNPGjdoi16pdS+rUrSdbtmxF2iRreNSOmQ5c1VG3bl3dlZlzChkGNbiNfBcNG8mcKyqK2xnGDz98odQE5+pmL+R08qbHlYIJpiWC+z3tzIfaFxhEc0Xno0sQSI/nKrA1p6lCEtRooOWuVr0GTKLb8JujksHCAzpCQ0KlD0yc6jWqy6rVq6HxcfCiaLTZkW0GJxwycvQoVKoQuQ9mb2R0FPlFNRYuZWnXpq18/e338vobb8FEDceb8Es1QjjVHmDOwgXZguSmm26Qd997B9pUSwkLD4EmZ+ITFhYMNbwiCDITlTlNK7Ll8B/+mcqtjsIB1Fzuu/9+CQ+PMJ33CKphw4aIVw1Nk7vvvtul1tu0f4tkUbFCBWg/udASk9TPY4NE6pSevS6Udu3b64Jzkg7jXKVKZenUubPwwJEdO3aoTHY0GB9//LEOvNx7731SGQ2R+qLh5EvNWrXkUhAdTzOjxkatj9pau3Ztda7gocOHdDOD7Kws7T9l3+pVA6+WRDQKhw8fNpo5wl6/dp1ERURKA8SV+V3seRosc+qOF08//ks4ozW4wvAuuCQT/M+a7qpU55x9Dlr4ECU/C6xwFStW0sEBVvT4+INaebxh9VGxo3/Xrl0SFRmpmom3OUuzuEOH9tDEOiuhmPtw+uF+ltc5MklNZydIgZX8z4kT5dvvvpPPYbptodaiTx67QtJHi5zi4uJU4yHpEOyj0800cS1EBwBcQNgM36SN+/3iwfvmmZo1a4IwOR9Qfyp4p3r1arqHGe+R/BivrYgDw+/WravGles1LdC0bovGgH1yq6DpcSCEfZYtWraUHJDazh079bmU1FQ1pa+44ko5u0sXST6aqCYrTVpuRrBu/Tpp0KihDigxHt754Ycfx8I/iOAsGA3HFypXroSK5hUl1AcSUVy5cqqRJEFD8AVWHBIGJ9o6HXZjEnsQpSdCoBXSY6uyeX8SJNF4mHPsg7vyyitl8EMPa3/Vxx98qB3tu0B6hK8Kq1d8XCeZMA4kDwvWzhI034uiqB/HAzVFpoNnGpO4SDhussyH5pUtmWnpEh0TIzEwX80pZh7vwI+Y2BhNh7179+LTTL1p1aqVEuWixYs0HksWL4YWmy79YWK3a9de4sqXkzmzZ+vgBkdW2ShdDXOZ/vvhx4nitBEcR0eM801OJQE787VyqxdF/cnkVt+o6GrqKYy5yOkaiQlJavLEodL5IkiLaKgl8ft+kJMnx/Ca5dgf5jl/zRc4deLZZ5+VkSN+1kGP9z/8QPvifhw+TEbBBO7arRsYi3LQTzNPTLVIBspwCq6bMMlV/FTTDZ+MA52b0D3ixHmIOhfRIwIlBPu5TPq45eL3UE7PQNgWOJJNOWhucoSY73hOnWHIGjq8qlC+Aj5AnHi+EUxRms8cnebzv/32mzRq3FgbIDYoNGvnzp0nqdDsOEgTDnP7gh49XFrlicfHj/823CXyFIPdU5Y7WbDesf+J20OjtLuuurFq5Uod2TOV0oCaA7U2zqOKiIhwzc0qqg2QOElanAZSvkJFrbS7d+923XWDWghPzKKz+vNIRoYQXGQE0IRbMH+B1K5TWwc5Ljj/fGnXtp20hgZTt149CaNJiUfN8yQUy3mi8G8+6+upUwEfyVsI7Odr2ryZapU0KS3itUAZ165dCw7nVJZWqhmS0GjK9uzZU9Nv/br1sm7tOmnapIlER7GvM0BPP+N+ZMuWLZMZ06dL8xbNdT6fZ5768e8F+YHNaFmV8VKXGnrg7bz7eTkPruQo6iO3UOYaUSo86WkZwoOftS5pQHCu7+s3rJW//voTJJSL39wI0awUWLNmtU6Kbd6ihYSGhYMo2YFvNCCrM98kK2fl5+txhFyN8P3334Iws1ApbSBVajMie/ftkfvuu1fuH3QftDSOouI9Sw6XH3QctMjJzdFJvyRWVmy+z0/28/H4QwrOuX1uWeBHIblc11zgd0bV85or8nCeaXbqwb5IznMjaXGkWbU41fCMqZ8O83XS5Mn6XO/eFyF18If7PJuAU13YyIwa/YukpaZJ23acAmJ2x61evabExsTJ6NFj5OiRBB3J5TskTzZCycnJOpHYNEgMz49/IwrXJuM8S31JcXpqA0DhTkZAA5vExMRoIR82dKjMnz9PFi1apNoUTSp1uFelShV559135ccff5DVq1bJSmh038MsfOLxx3V+2XXXXecaaTw2OImXy6Ym/DFB3oV/S5Yu1flmk/+aLC+98KJsQgU7+6wuSlYGRWPGcJo2aarTLn6ADJs3b1FSmzhxojz04EPat0TCY9wsIlPi4j8XgRUmsuKgnpx2MH4XXnihHr69ePFieeWVV2T27DloZNbLzFmz5PkXnpeluM75eJy2QqIjmE8VK1aU6tWqy+iRI4WDop07d1aNl6RXuVJlHf2dPWumpGdk6IguSZTvkdxuv+02ufLyPvLUk0+B5PwE928DS3xJSn1JcfoIDvXQcicKEknfvn0lPDRM57rddeedcs/d9+g8NJpIbM1JBr1699Z5Zm+//Y6uLLgehPb6a69qJ/bDDw+Wfv36uYjE5bEPGKKsLJ8MGaLm6nfffSfXX3OtXH3V1fLgoEEwO+dL74svlqeefsqj0gboKKHR0kwEOWL48CODtS9uyMefSH+EfeUVV+hgAzW7Cy44X1c2eM7rouZD89vyh06v4Teftfz2TEId1SwYzXWDv73fKx4mHJIWP/GC67oBf7KTnyOi1kgptacw5AdXJ1StWlXG/fqr3AmNjvG884470Dj8oVM7Pv30U6lQobzmkYWYmFg9kJtri9u2aS01a9ZyyWjTZTo9YMJyB1yG16plK13KxbhwIjSnkXDHFi4lO14/qB//PFj8UFYkV+ZLtdgSc12jJ5HRRHVvjmcK8omABEJ/adrNnj1Lp3rExkbJTTffrKOH06dPkztBeoMGPSCDHhikayqp4SUlJaLyVYOZ01m6dOmiJFQ8KKARkisPKOHu3Xtk2bKl0L42q/ZQCxWxbbu20hkkSgKzRi6zsrJk6tQpShA9evTQewpUWvZPsS+Jc7s44sglWt3PPVenTnCqxIW9eukOpsTefXtl3pw50rBRQ9WMWOkd0FJHjx6tBHH99ddrRWeWWaQ1btxvOtN/4DXXgJzMtaCgECWDSX/+KalpKdK/f39dG1ocWAL27dsts2bPlhYw49tC41Ki88AKaLDr16/X/jMSGu9bRSchIUGWLl2mGnNycpLebw0/zup8FggrwjyL5yxy5GurV6/F8yt0VLVDh45KmJSbxsiuXTtl/oL5appeddUAfYddFNmIJ9fyrlmzRic6N2zYoCAd/Pi34Aw/k4EaCwt8WRIcQZJjJbBcUDAnfTo0Ibi4/K477pR777sXmtrDqlmZaFELMnvI852C3Sh8gs+bjnCCxMLKwwmqFJeVjXHjgbqcn8VwraSj31YfEyuzVen0Lp7hc3oNjpVcQ8I1khZ/61mues0yuawdUkgMZvSRE2ut+W+ecDjMs56nKNntTl2zqzuwQMsxmqa55wsmHM47g3PJqk7v0YTmUyYeli+8bgjLpgMJfEgHgEDATDuGaVKB75t4aRoAJj34nOlHCwmhJst1uvTd9D3y8Gg+zrgRJo34fr7JB/qvshUfLz/+iShbgitaY04QLF6WYzHWqu4lRVlMLjeVxEyLoFnHws0Z/FxDqec4oqKwEnCiL6PF76xs1ruuunUM8AFUdFNX8S7NMZhtqEg87RxVEn6H4n9zypAxi82zJAg6a5sgKyv4Pk9jMisvcE+Tm8SB63BBgaykfNcQConYcioL0w2JydFas8Dc+OvpmBbexB0M8ucgh5VWTLdjQdMWjwRAfsoUSHkRnhUXlREyaZrik85or4b8+J0yh7gmWXP1iKFHEwcTR3e6mO/UNPEOyI2ghm5Wkxgi1fSHHNY75rqrcXMVfj+5/Xthcr2oO1GYklYKsIhZjvBV5E5GMF+wNACFBmSIgUQWEhqOCsGKRGIzBGgq10mEXhAhVlOXlqC/8aGVyl1JLfA5/u/p9NFC7/HT/Z3w9sfAW2YTT8tfT+f21+2nCdRyJQX8K/K4FQ6Ae75k8LymIsAZUXgN/xcjt28YDwpnWeHn6Z/x049/O6ycL1wCTgylNlGN8WFAA4b9Qez7Kh6lEbcoKH5qapps2LBeqlev4VqBQI2iaBj+iuGHH2c6yvZUrTIjOJIbTdG0jHRJT0tzXXXD7PJr4G3C+uGHH34QZ/R+cMdSkEhqlvPDDz/8OB0oU4KjLuhwOEBitiLODz/88ON4YJ90sZuangTKluDgOIWCI45FnR9++OHHscG+c65MKiuUGcGZUcTiQdOU8+H8JqoffvhRHDgjwpreVRYoUw2Oc5SKXT5jbeHjZzg//PCjABymdDsu1SvL2Q5lRnAcRTWnWLku+OGHH36cALg6xTpOsqxQaoIj16oDsdntDpAcN7U0vws5f0+cH374UQBygcUHXMUToNuKlfVc1TIjOK4rzM7m6fHua4Wdf7jBDz/8ICxyM1xA6y80NEwiwiP0d1mizEzUrKxsXU9o1lGS0vzwww8/vFGUG7gxRExUlIvuyhZlQnDc3YHnFFgw6wXNAmvjTKS4aPx4Cyc8zdrTjX9LuJZ/ZeVnWftHnCr/ytLPkuDvCpf4u8M9mbAtbuCuNdx9JiQ0WM9J0dHTMjZPiZNeqsWX6HjqOg84duroaHECOnUbIu74YW2dY1CUXz0TzT3g6vnOsVBSvrakLwwrbHe4x4qTN05exqLhEqX3j3D76TvORVE0zmXtH3F64nzqy43vcH3HuSiK+ucbvv0r6zT0jaL++Y5zSf0zIJeFh4dJTHS0kp61t2JZ44QJzmSJ0cQ4qJCamqL9b8YX904PSmT4yi2NuC1ObEyMbhtOTY8an+7w6plQrk/fiedx8ZgoeKEEKOyn73CJkvp58jL6Lqil948oizQsPm1Ozs+y9o8o6zj7RlH/fIdbUv+I0se5rNLQN8oizi5ewD/Yc7pFFteamsOECp4wX8oYJ0xwFp/b7bl6aC/73chu+Yip5ZXZ04y2dbBEREbqPmEW8RHcIJEnmudkGbOW8+ccDod+90ThjCs7eGaQL5yqcIljhX0y4ZZ1XE5F2pzpcS4p/q5wibJOw5KirOLMg8k5xy0kKBjamlsROtU4KYLjK+kZ6ZIDcqM2RgQVbIJoziMICw+VYETGoLCaS7amFqisXVzouOV+q/D7xaNkaq6O5h4j2u5TwPilpBlRMhkDPHZV8QYLi1uq0vtHuONCn4+f1QFMw2M8dqL+MY9tx6gFZR3nk/GvpOUmgD7/DeXmVKRhieNcqEupKNxxPr5/1N5KmiplhZPW4IjiXi3Kzr4TSStTCeAscaYx3OMnYUmnq1gTW0qGkslY1nEua/+0MpUgztpNgb+S4EyPM30sCWzwrySloeTlhun396RhSeMcUEL/nCVOQx811DMJSpJsJ4CSSVUMSGS+nB9+WECJcH37N8Bftv9pOKlBBs9PTxSf/b6DKGnhL6mmUPICWHK97ESeLAnKOs5nun/EmS9jyfwridZPmKdK5qf19PFw5se5pP4VAyuYkiZbCXHCBGeBL3m+SLnKWDY//PDDj1KhVCaqH3744ceZjJPW4Pzwww8/znT4NTg//PDjXws/wfnhhx//WvgJzg8//PjXwk9wfvjhx78UIv8P3u2RPQZ43iAAAAAASUVORK5CYII=",
"text/plain": [
"<IPython.core.display.Image object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\u001b[33muser_proxy\u001b[0m (to chat_manager):\n",
"\n",
"\n",
" 1. OCR Agent: Extract text from this image: ./samples/02.giftcard.message.scam.png\n",
" 2. Content Agent: Evaluate the messaging and claims\n",
" 3. Decision Maker: Synthesize all analyses and make final determination\n",
"\n",
"--------------------------------------------------------------------------------\n",
"\u001b[32m\n",
"Next speaker: OCR_Specialist\n",
"\u001b[0m\n",
"\u001b[33mOCR_Specialist\u001b[0m (to chat_manager):\n",
"\n",
"\u001b[32m***** Suggested tool call (call_u8NqTuVd9I0eMW0FEyuggyxJ): ocr *****\u001b[0m\n",
"Arguments: \n",
"{\"image_path\":\"./samples/02.giftcard.message.scam.png\"}\n",
"\u001b[32m********************************************************************\u001b[0m\n",
"\n",
"--------------------------------------------------------------------------------\n",
"\u001b[32m\n",
"Next speaker: user_proxy\n",
"\u001b[0m\n",
"\u001b[35m\n",
">>>>>>>> EXECUTING FUNCTION ocr...\u001b[0m\n",
"\u001b[33muser_proxy\u001b[0m (to chat_manager):\n",
"\n",
"\u001b[32m***** Response from calling tool (call_u8NqTuVd9I0eMW0FEyuggyxJ) *****\u001b[0m\n",
"Congratulations!\n",
"You've won a $1,000\n",
"Walmart gift card. Go\n",
"\n",
"http://bit.ly/123456\n",
"tp claim now.\n",
"\f\n",
"\u001b[32m**********************************************************************\u001b[0m\n",
"\n",
"--------------------------------------------------------------------------------\n",
"\u001b[32m\n",
"Next speaker: OCR_Specialist\n",
"\u001b[0m\n",
"\u001b[33mOCR_Specialist\u001b[0m (to chat_manager):\n",
"\n",
"The extracted text from the image is as follows:\n",
"\n",
"---\n",
"\n",
"**Congratulations! \n",
"You've won a $1,000 Walmart gift card. Go \n",
"http://bit.ly/123456 \n",
"to claim now.**\n",
"\n",
"---\n",
"\n",
"### Analysis of the Messaging and Claims:\n",
"\n",
"1. **Claim of Winning a Gift Card:** \n",
" - The message states that the recipient has won a $1,000 gift card which is a common tactic used in scams to entice users with unrealistic prizes.\n",
"\n",
"2. **Call-to-Action (CTA):**\n",
" - The instruction to \"**Go to http://bit.ly/123456 to claim now**\" encourages immediate action, which is typically observed in fraudulent messages. This urgency can lead individuals to make hasty decisions.\n",
"\n",
"3. **Use of a URL Shortener:**\n",
" - The link provided is a shortened URL (bit.ly). Scammers often use such links to obscure the destination, making it harder for users to identify if the site is safe.\n",
"\n",
"4. **Lack of Official Branding:** \n",
" - Although Walmart is mentioned, there is no official branding or logo associated with this message, which further indicates it may not be legitimate.\n",
"\n",
"5. **Common Scam Characteristics:** \n",
" - The format and language (e.g., \"Congratulations!\" and \"You've won\") align with typical scam messages aimed at eliciting personal information or financial details.\n",
"\n",
"### Final Determination:\n",
"This message is likely part of a scam. It claims an unrealistic prize, employs urgency, uses a URL shortener, and lacks official branding. It is advisable to avoid clicking on such links or providing any personal information.\n",
"\n",
"--------------------------------------------------------------------------------\n",
"\u001b[32m\n",
"Next speaker: Content_Analyst\n",
"\u001b[0m\n",
"\u001b[33mContent_Analyst\u001b[0m (to chat_manager):\n",
"\n",
"### Final Analysis & Determination:\n",
"\n",
"**1. Common Scam Patterns:**\n",
" - The message claims that the recipient has won a large monetary prize (a $1,000 Walmart gift card), which is a typical scam tactic designed to lure individuals with the promise of free money.\n",
" - The format features exclamatory language and congratulatory tones, often used to evoke excitement and urgency.\n",
"\n",
"**2. Contact Information Evaluation:**\n",
" - The provided URL (http://bit.ly/123456) is a shortened link, which is often used in scams to mask the actual destination website. Clicking such links can expose users to malicious websites designed to steal personal or financial information.\n",
"\n",
"**3. Urgency Indicators:**\n",
" - The phrase \"to claim now\" creates a sense of urgency, pushing the recipient to act quickly without careful consideration. This tactic is commonly employed in scams to disrupt rational decision-making.\n",
"\n",
"**4. Inconsistencies in Messaging:**\n",
" - There is no official branding from Walmart or any legitimate verification in the message, indicating a lack of credibility. Legitimate giveaways by established companies would typically include confirmed branding and often have more detailed processes.\n",
"\n",
"**5. Claims and Offers Evaluation:**\n",
" - The claim of winning a $1,000 gift card is highly questionable and likely fraudulent. Such large sums are seldom offered without legitimate contests or promotions. \n",
"\n",
"### Conclusion:\n",
"Based on all observations, this message is highly likely to be a scam. Recipients should disregard the message, avoid clicking the link, and refrain from providing any personal information. It exemplifies the classic traits of phishing scams.\n",
"\n",
"--------------------------------------------------------------------------------\n",
"\u001b[32m\n",
"Next speaker: Decision_Maker\n",
"\u001b[0m\n",
"\u001b[33mDecision_Maker\u001b[0m (to chat_manager):\n",
"\n",
"Based on the analyses provided from both the OCR extraction and content evaluation, I have reached a final determination regarding the probability that this message is a scam.\n",
"\n",
"### Final Determination:\n",
"The message purporting to inform the recipient of a $1,000 Walmart gift card win is unequivocally a scam.\n",
"\n",
"### Detailed Explanation:\n",
"\n",
"1. **Classic Scam Traits:**\n",
" - The claim of winning a prize, especially of such an amount, is a hallmark of scams. Organizations do not randomly award gift cards without a proper contest or registration process.\n",
"\n",
"2. **Urgent Call to Action:**\n",
" - The phrase \"to claim now\" creates a sense of urgency that is typically designed to prevent the target from thinking critically about the offer or engaging in due diligence.\n",
"\n",
"3. **URL Shortener Usage:**\n",
" - The use of a shortened URL (bit.ly) is another red flag, as it obscures the real link and can lead to harmful sites. Scammers frequently employ such tactics to hide their true intent.\n",
"\n",
"4. **Absence of Credibility:**\n",
" - The message lacks official branding and does not direct the recipient to a legitimate platform associated with Walmart. A credible business would provide clear identification and often more detailed instructions for any contests or promotions.\n",
"\n",
"5. **Emotional Manipulation:**\n",
" - The exclamatory and congratulatory tone is crafted to elicit excitement, preying on emotions to trigger impulsive responses. This strategy is prevalent in scams aiming to elicit personal data or financial information through deceptive means.\n",
"\n",
"### Conclusion:\n",
"All elements analyzed confirm that this is a highly probable scam intended to mislead recipients into providing sensitive information or engaging in fraudulent activity. The message exhibits the quintessential characteristics of phishing attempts, and I recommend immediate disregard for it.\n",
"\n",
"TASK_COMPLETE\n",
"\n",
"--------------------------------------------------------------------------------\n",
"\u001b[32m\n",
"Next speaker: user_proxy\n",
"\u001b[0m\n"
]
}
],
"source": [
"image_path = \"./samples/02.giftcard.message.scam.png\"\n",
"display(IPImage(filename=image_path))\n",
"\n",
"workflow = ScamDetectionWorkflow()\n",
"results = workflow.analyze(image_path)"
]
},
{
"cell_type": "code",
"execution_count": 111,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'content': 'Based on the analyses provided from both the OCR extraction and '\n",
" 'content evaluation, I have reached a final determination '\n",
" 'regarding the probability that this message is a scam.\\n'\n",
" '\\n'\n",
" '### Final Determination:\\n'\n",
" 'The message purporting to inform the recipient of a $1,000 '\n",
" 'Walmart gift card win is unequivocally a scam.\\n'\n",
" '\\n'\n",
" '### Detailed Explanation:\\n'\n",
" '\\n'\n",
" '1. **Classic Scam Traits:**\\n'\n",
" ' - The claim of winning a prize, especially of such an amount, '\n",
" 'is a hallmark of scams. Organizations do not randomly award gift '\n",
" 'cards without a proper contest or registration process.\\n'\n",
" '\\n'\n",
" '2. **Urgent Call to Action:**\\n'\n",
" ' - The phrase \"to claim now\" creates a sense of urgency that is '\n",
" 'typically designed to prevent the target from thinking critically '\n",
" 'about the offer or engaging in due diligence.\\n'\n",
" '\\n'\n",
" '3. **URL Shortener Usage:**\\n'\n",
" ' - The use of a shortened URL (bit.ly) is another red flag, as '\n",
" 'it obscures the real link and can lead to harmful sites. Scammers '\n",
" 'frequently employ such tactics to hide their true intent.\\n'\n",
" '\\n'\n",
" '4. **Absence of Credibility:**\\n'\n",
" ' - The message lacks official branding and does not direct the '\n",
" 'recipient to a legitimate platform associated with Walmart. A '\n",
" 'credible business would provide clear identification and often '\n",
" 'more detailed instructions for any contests or promotions.\\n'\n",
" '\\n'\n",
" '5. **Emotional Manipulation:**\\n'\n",
" ' - The exclamatory and congratulatory tone is crafted to elicit '\n",
" 'excitement, preying on emotions to trigger impulsive responses. '\n",
" 'This strategy is prevalent in scams aiming to elicit personal '\n",
" 'data or financial information through deceptive means.\\n'\n",
" '\\n'\n",
" '### Conclusion:\\n'\n",
" 'All elements analyzed confirm that this is a highly probable scam '\n",
" 'intended to mislead recipients into providing sensitive '\n",
" 'information or engaging in fraudulent activity. The message '\n",
" 'exhibits the quintessential characteristics of phishing attempts, '\n",
" 'and I recommend immediate disregard for it.\\n'\n",
" '\\n'\n",
" 'TASK_COMPLETE',\n",
" 'name': 'Decision_Maker',\n",
" 'role': 'user'}\n"
]
}
],
"source": [
"import pprint\n",
"\n",
"pprint.pprint(results.chat_history[-1])"
]
},
{
"cell_type": "code",
"execution_count": 112,
"metadata": {},
"outputs": [],
"source": [
"import json\n",
"\n",
"\n",
"with open('results.json', 'w') as json_file:\n",
" json.dump(results.__dict__, json_file, indent=4)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.1"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|