Spaces:
Running
Running
File size: 79,395 Bytes
4533ee3 e42055e 4533ee3 e42055e 4533ee3 e42055e 4533ee3 e42055e 4533ee3 e42055e 4533ee3 e42055e 4533ee3 e42055e 4533ee3 e42055e 4533ee3 e42055e 4533ee3 e42055e 4533ee3 e42055e 4533ee3 e42055e 4533ee3 e42055e 4533ee3 e42055e 4533ee3 e42055e 4533ee3 e42055e 4533ee3 e42055e 4533ee3 e42055e 4533ee3 e42055e 4533ee3 e42055e 4533ee3 e42055e 4533ee3 e42055e 4533ee3 e42055e 4533ee3 e42055e 4533ee3 e42055e 4533ee3 e42055e 4533ee3 e42055e 4533ee3 e42055e 4533ee3 e42055e 4533ee3 e42055e 4533ee3 e42055e 4533ee3 e42055e 4533ee3 e42055e 4533ee3 e42055e 4533ee3 e42055e 4533ee3 e42055e 4533ee3 e42055e 4533ee3 e42055e 4533ee3 e42055e 4533ee3 e42055e 4533ee3 e42055e 4533ee3 e42055e 4533ee3 e42055e 4533ee3 e42055e 4533ee3 e42055e 4533ee3 e42055e 4533ee3 e42055e 4533ee3 e42055e 4533ee3 e42055e 4533ee3 e42055e 4533ee3 e42055e 4533ee3 e42055e 4533ee3 e42055e 4533ee3 e42055e 4533ee3 e42055e 4533ee3 e42055e 4533ee3 e42055e 4533ee3 e42055e 4533ee3 e42055e 4533ee3 e42055e 4533ee3 e42055e 4533ee3 e42055e 4533ee3 e42055e 4533ee3 e42055e 4533ee3 e42055e 4533ee3 e42055e 4533ee3 e42055e 4533ee3 e42055e 4533ee3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 |
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Minerva: AI Guardian for Scam Protection"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This notebook implements a multi-agent system for analyzing images (screenshots) to identify scam attempts, and provide personalized scam prevention. It uses [AutoGen](https://github.com/microsoft/autogen/) to orchestrate various specialized agents that work together.\n",
"\n",
"Benefits:\n",
"- Automates the process of identifying suspicious scam patterns.\n",
"- Prevent Financial Loss\n",
"- Save Time: Early scam detection reduces the number of claims filed by end-users."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Install Dependencies"
]
},
{
"cell_type": "code",
"execution_count": 72,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Note: you may need to restart the kernel to use updated packages.\n"
]
}
],
"source": [
"%pip install -q autogen-agentchat~=0.2 pillow pytesseract"
]
},
{
"cell_type": "code",
"execution_count": 73,
"metadata": {},
"outputs": [],
"source": [
"from typing_extensions import Annotated\n",
"\n",
"import autogen\n",
"\n",
"from IPython.display import Image as IPImage\n",
"from IPython.display import display"
]
},
{
"cell_type": "code",
"execution_count": 74,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"from dotenv import load_dotenv, find_dotenv\n",
"\n",
"load_dotenv(find_dotenv())\n",
"\n",
"config_list = [\n",
" {\n",
" \"model\": \"gpt-4o-mini\",\n",
" \"api_key\": os.getenv(\"OPENAI_API_KEY\")\n",
" }\n",
"]\n",
"\n",
"llm_config = {\n",
" \"config_list\": config_list,\n",
" \"timeout\": 120,\n",
"}"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Agents Creation"
]
},
{
"cell_type": "code",
"execution_count": 99,
"metadata": {},
"outputs": [],
"source": [
"def create_agents():\n",
" \"\"\"Create and initialize the specialized agents.\"\"\"\n",
"\n",
" ocr_agent = autogen.AssistantAgent(\n",
" name=\"OCR_Specialist\",\n",
" system_message=\"\"\"You are an OCR specialist. Your role is to:\n",
" 1. Extract text from an image path using pytesseract\n",
" 2. Clean and format the extracted text for further analysis\"\"\",\n",
" llm_config=llm_config\n",
" )\n",
" \n",
" content_agent = autogen.AssistantAgent(\n",
" name=\"Content_Analyst\",\n",
" system_message=\"\"\"You are a content analysis specialist. Your role is to:\n",
" 1. Analyze text for common scam patterns\n",
" 2. Identify and analyze URLs, phone numbers, or other contact information\n",
" 3. Identify urgency indicators, threats, or pressure tactics\n",
" 5. Check for inconsistencies in messaging\n",
" 6. Evaluate legitimacy of any claims or offers\"\"\",\n",
" llm_config=llm_config\n",
" )\n",
"\n",
" decision_agent = autogen.AssistantAgent(\n",
" name=\"Decision_Maker\",\n",
" system_message=\"\"\"You are the final decision maker. Your role is to:\n",
" 1. Coordinate with other agents to gather all necessary information\n",
" 2. Make a final determination on scam probability\n",
" 3. Provide detailed explanation of the decision\n",
" 4. End your explanation with the label as 'TASK_COMPLETE' when done\"\"\",\n",
" llm_config=llm_config\n",
" )\n",
"\n",
" summary_agent = autogen.AssistantAgent(\n",
" name=\"Summary_Agent\",\n",
" system_message=\"\"\"You are a communication specialist who creates clear, concise summaries of technical analyses. Your role is to:\n",
" 1. Synthesize the findings of a scam assessment into user-friendly language\n",
" 2. Highlight the most important points that users need to know\n",
" 3. Provide actionable recommendations\n",
" 4. Use clear, non-technical language while maintaining accuracy\n",
" 5. Format information in a way that's easy to read and understand\"\"\",\n",
" llm_config=llm_config\n",
" )\n",
"\n",
" user_proxy = autogen.UserProxyAgent(\n",
" name=\"user_proxy\",\n",
" is_termination_msg=lambda x: \"TASK_COMPLETE\" in x.get(\"content\", \"\"),\n",
" human_input_mode=\"NEVER\",\n",
" max_consecutive_auto_reply=10,\n",
" )\n",
"\n",
" @user_proxy.register_for_execution()\n",
" @ocr_agent.register_for_llm(description=\"Extracts text from an image path\")\n",
" def ocr(image_path: str) -> str:\n",
" from PIL import Image\n",
" import pytesseract\n",
"\n",
" try:\n",
" image = Image.open(image_path)\n",
" text = pytesseract.image_to_string(image)\n",
" return text\n",
" except Exception as e:\n",
" return f\"Error in text extraction: {str(e)}\"\n",
" \n",
" return ocr_agent, content_agent, decision_agent, user_proxy "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Workflow"
]
},
{
"cell_type": "code",
"execution_count": 100,
"metadata": {},
"outputs": [],
"source": [
"class ScamDetectionWorkflow:\n",
" def __init__(self):\n",
" self.ocr_agent, self.content_agent, self.decision_agent, self.user_proxy = create_agents()\n",
" \n",
" def analyze(self, image_path):\n",
" \"\"\"Coordinate the multi-agent analysis.\n",
" \"\"\"\n",
" image_path = \"./samples/02.giftcard.message.scam.png\"\n",
" \n",
" groupchat = autogen.GroupChat(\n",
" agents=[self.ocr_agent, self.content_agent, self.decision_agent, self.user_proxy],\n",
" messages=[],\n",
" max_round=15,\n",
" )\n",
" manager = autogen.GroupChatManager(groupchat=groupchat)\n",
"\n",
" # Start the collaborative analysis\n",
" messages = self.user_proxy.initiate_chat(\n",
" manager,\n",
" message=f\"\"\"\n",
" 1. OCR Agent: Extract text from this image: {image_path}\n",
" 2. Content Agent: Evaluate the messaging and claims\n",
" 3. Decision Maker: Synthesize all analyses and make final determination\"\"\",\n",
" )\n",
"\n",
" return messages"
]
},
{
"cell_type": "code",
"execution_count": 101,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAATgAAACsCAYAAADv/7CLAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAKvqSURBVHhe7V0FgJTV972z3bt0d3cjCqKCYKESit0tBurP9m93B3YDIiAIKgjS3d3dsMSy3TM7+z/nvvl2ZmdnYWEXRJ2zPGbmi/fuq/PufWnLB8QPP/zw41+IANenH3744ce/Dn6C88MPP/618BOcH3748a+Fn+D88MOPfy38BOeHH378a+EnOD/88ONfi9M2TcQ/F8UPP/5bsLk+/06cNoJzuj798MOP/wZIcH83yZ0hJqpfv/PDDz/KHqdFg6P2lo8/G/nc6RS7wy5Z2dmSk2MXB777Cc4PP/59UO0NVdtms0lQUJCEh4frJ11gYKBeP9U4bQTHmObk5kpyUpLkgeQYrA0KpM3mJzc//Pg3wrtqs85b5BYaGiqRkZESEHBqjchTRnD0lPzMz1xoaZlZWZKZkekiNgvWExa8RTn1DO+HH36cOhSQHLQ1amx0ygH4DAsLg1YXJsHBwRLA63zMPF1mOGUER62Nwjry8iQpKVFyHHl6ndeKV9o8hyL0SfPVDz/8+EfDZiuqqYHT9HpUVKSarwH87bpXVjil+mGu3S5JyUmSk5PruuKHH374YUDVyul0SmpqmuTmgiNOgap1Sggu35mvgmdmZkDwHJHAYng531fwvEbn19788OO/AHJFWloa+K3sGe7UaHDgJo6UZmRk4OvxiMpPZH748V+H3e6QtPQM16+ywykhuDz2uyUmeY2QkJ09HeH5nfCTnR9+/NfAAQdOF0sHwTkcDtfVssEpITgK6chz6GiJGxaZWc6JmHneJ/wE54cf/0Vw+gh5ISsrS3mjrMY+TwnBZWdnu7754YcffpQc5A6SW1lNAi5zgqNw1OACbZzE63aBCIruuH1yHHhQ59fm/PDjvwAzP87wRC4svzxqcK57pcUpM1FtxcxQ9tOWH374URzKmh9KTXBWj5rlCC7FsqBcrPa0cca0ZjSKi4r1bMlgqbLGZvfl/CgLWOmsH/q1bNPa6ncx5cP9249/CzzLybEc/nfle9E7J44yJzhSm9MljgoKZ3MVVneBLaglRcGBB8sdA05nHiob/cxDaE7Xd65xNa6wVH6UBjZOMWcqI83p8nQAyTuNS5fWJFCn07zPieH8zmuFy40f/1RY+Xg8xzlx+nwx7kRxSkxUwl0BTg24fi0pKVmOJCSI3W7XqSlIHz9OBZCw2dlZMnvObFmxYoUSj6XRlSWCggJl7949Mnr0aA0nL88Udj/+OyjrclXqtajeRZDeHYg/oItnPWHzWLVwYuMHVmXK1wKfk5MtY8eOlU8/HSIpqSnKobzdvXt3+b/nn5fKlSqB/EJcBEvw3RMK8F8BSwOy0q40oBf79u2TvldeIS1btZIhQ4ZIVFS0664njp3WnBfJFpoycd4Td5Uwcpr7DkeePPbYozJ50mRp0aKF/DRihISFheq9si74pQVrDfuahw8fJhs3bkT5O08uu+zSM07Ofx6cUqlSZde0kcI4dunyjVOmwXmDpGa5EwULDclt48YNMnDgQHkRRMalHbVr1ZKGDRvoQt0ZM2bIJRdfLF988YVkZJb9jOgTAwnF0x0LJX225M9RE5oyZbI88sjDMmvWLG10iqLk/tE50WDk5nL/Pge+F/f8sf2z23OV2L77/lsZPPhh2YD89HyW+dylSxeQWog0atwIFzz983R/PyhrYGCAapq/osE9dOiQ644fZxLKnOCUv8q0DNI8ypbt27fJLbfcKuvWrpWzu3aVPyb8IWNQsEb8PFJmzZ4tTzzxJLTGAPnw/Q9lzJgxqhm4pPEJWPz6Z/0qe9BPyxUH9zOeDb/FH97aQHFmv0Vg5hOarjNPNm3aKH/89pvs379f/Svqp3nWuOLgSiO8w/esV721cwtW+NoLawVYgHzV4NiVsGL5Mvnjjz/kaMKRQs8FBNjkqquvkqXLlssrr7wiwa7Jn0WdgTv/SovC/hoc228mQWBgEEoYGl9onmGhRtP048xCqQmOHng6Fv0Ar6tOEE9pwEox5JMhknD4sFzYqxe0tC+lXt36EhUZDRclkRFRctttt8u7770vIShob7/1ruzYsVO1PlOBSAwc+uBuwtAi8uy6CQC1CacTGgkIwXrG7ai1mE51M+PFiedzQR7sYOdvX3C9h3dICJSbHeaGDwwpkHjZ8jNcEhblo0bEaTWcB8T77FOkKadyqRZDs85UOWpQ9JegRmV1ygYGskOeAwB5kp2VreEbMeE/rllEYg3K8Le5ZpMAyGPNQ6LTe3iGgwnqD8JQ5/EOw+VXJV3IlpObLbl2pCne4S4yjAPvUR4TzzzIm433HK57Jt4E40wXEBAoQZAlKDhQgkOCJBCaKGE9y9F5Ooaj+Yj8Y37QmbQv7DSuzEOmC57hQJTJG9zFb6aZyU8+a54PwDU6rqWmHwVhoMxY/pr8pOz47YqDH2ULJnFhFjHXThRlvh8cvTtw4CAkcovj9JCMX7XOngCSk5Plot69UXmcMmrUKJilDXG1qCes8K+88rJMmjRJnnzySTVntQKyuqJirFy1SpYsXizz5s2TxMQkqVCxglzYs6f0799foqOjtTITrEQ0Pf6aPFn69eunO4/++uuvMmvmLC34rVu3lb59+0nnzp1QSUwlNGAfYa6sWbNK5dyyZauGe+6557rCiFFybtmqhfS98kolOpLIJ598pjuvXHvddbJs6VIZP368ZGXmyJDPPpFaMMOJhITDMn36TJk3d57s2rUT4eRI61at5PIr+knHjh0kIiJM997bsGGt/P7bBFmwYIGsX7sO2u450qBBAwkNCZOHHn5I4srFyebNm2Xkzz9Jt3PPk/POO093V3UWdOgHyLRpUxHOHLnm2mukcZOGIJ4g2btnn/S57DJp1bqVfPXVVxIeHoH0YrFzysGDB2XK1L9k5oxZsv/AAfXvrLPOkl5ojDp17KTExefmzJkjM2ZMl5kzZ8qObTvk4ksvkRo1akr9+vXkmmuuhWkaIXv37ZYff/hBzurC9y9UclapkFbJyamyZMliGfPLWKTBLpBgiLRv317LRrt27ZAGkXjSlAuWQ8qZkJAgDzz4oMyfP19+Q7ru2bNHYmNiEfducu2110rFipX0Hasa8P81q9fI5MmTZPGSJZKeno7GtK5cfNHF0vPCnhIbG1dQTogHBz2o2uirr70m199wfaF7fpwMTB8ctfeySMnAFwHX9zJDWlo6WMwtHvvdAlByeOVkhP7rr79k/Ljx0qxZU7nzrju1EPkqSDSBOnbsqGTSvHkLVLQQneJAMuD7jz76iCE3bpsOTWgntDz2Uf02/jfp1KmTVKhQAVoDzCIUdlZGdqazs/u5556TuXPmusj7gJrJJFFWrurVq6ssqoVAA/jxhx/l2WeekbVr1kpGZiYIzCmLFy3UPsKWLVvJi8+/oBXz4osvUnKkOfnU08/I/HnzZQfM8GHDhithZKBiXQ2CjomJ0e8PPviADP1hKGTerjImIQ5rEAblYEd8W1RwdswuBUEO+XgI/Dgk+Yj7ofh42Qqi3b59h9x4400ggXAl79dff01q1qghXc4+25UnrNpmFQrJ/Ltvv5Hzzz9f6tWrp6Z/SkqqjBgxQqpUqSKXX365jmIzPfYf2C833HCj/PnHRIlHWIxbPNJo+fLlaCD+kmpIn6ZNm+uzf/01WX74/gdJSk4Up8Mp8QfjZePGTZKTnSWX9emjg0Nbt26R5//veW18zjuvO6lH45uSkiL33HO3fP/t97Jn9x7VFLmhw2o0Wn9O+lMOQbsnqVIujQ3Ce/XVV2XGtOlSpXIVeeGF5+XIkQTkfSLIeo8sWrhQZiOP2YCxoWEeUtucjLI2+OHBmo40xSuULy+rEAYbO8bpggt6aJ5YmvO06dNlE+LQq3cv5G9Ln+XSj5KDU8qoUAQas6nUKBtfTjGmoxCBPqQDtAFW4uIKEa+z8NVAxY2JMaN83Jtu69at8vbbb6lm8X+oPCTMmSC2v6b8JQMGDJAjCUfkPZi3pF8W6gAQD6s7K/tHH32kGti438bL1OnTZC4I8r77B0lqaqo89tj/oFWkmPeQIZs3bZJPQYrcivn5l57Xwk9t6Lfff5e2bdvK448/Dj8tk43SGTBMbvi3d/9+efGlF2UStIc/UaFInqxIEydOlCULl6ByXSCTp0zRSrgAFXTIZ5+KA+bel19+IYfZyQ1PL7roIlkELeeuu+9S4vo/EOqipUtkETTX8qis1l597DeyTPjCgwau+6jsJO1jNUl87rNPP5NDIOTrb7xeJk6aqLKyT/SZZ55Vs/aLz79QMiZR3XrrrTJvwTzpAZKgSf7JJ5/IsuXL5NvvvjNaJMie8WHjkwtNmDIwXdkH+/FHH8vyZcvlbBDyiJE/yzxoZHPnz5Mvv/pSqiO/fxk1WtOa7xCMF7/n2nPlx6E/ymvQsKYj/6jZDhv+EzTTJrJpw0b5DflqxT8FefrJxx9rmO+88y7yYbJ89/33MvHPP+WCHj1kLRq233//TRtMC6yMLI4x0M79KBuUZRNxigjOs8KUHtQe2JnbvHlz15WSg/09E2BCHDlyRK66+mo1I6pWqSrhIKFatWvLs9DO6tSpIwtAXCz8rBhWnxPNNhb2F154EVpIU2g/EVIOJPEwWni+k3D4EEye3QjFaD5jx/4qqWmpMO2uhbZ0o5QrV07foUn9/PPPS0RkBNnMCGalEdRbhsn+pqeeegqm2jUw2RpItWrVVTOjltcTZvSESRPkLZA0R45jQeIR4eFqXvft11fS09JkIQiPmk5wcJASLEeW2RXAyhcVFaUEwjCt/kGWIteH+X2CYLrQ9LznnntkwsQJ8vTTT8OUq6dxLg83cODVIJHGSPfDchjaFRGOtAiFhkdzk2QcAXIICw3TRosDDKYP0Mhi/Od0kjztouDUkUqVK8lLr7yk5iiJJTY2Vs6DlvkMNGaO0L7x5puFNnpgujKZb7jhBrniiiskNi5O3zn77C6ah0HQ8JnnlhmcmZEhB9FQ0GQ+t/u5CCNKoqOiNc3feOMNNCRfyTnnnFNoCoOGAXCU2Y8zD6UmOGartzO+uq8EnFDmu9+zXF5ertbEwCAWfut6ycCN9CZMmITKbpP+/QZAOyBpUQtEpYLjQMX1198ktsAgPPcnCiyFZ58RK1iQdO16Lq6xox2X8BkEwrHZnDBP2+GTs+7ZoU8mccpsaIXcZKAbND6bLdA1CmgqazRI6fbbb8cvI7sSKesf6wfCDEJYjRo2xrM0/Qz5sHIyvIqVKilJxsbFaAd4dk6WVnySAU1OfnKbGWpl3rsk03uCneou7tDnoXPi0xCKRSoGDNx6C0CcNfG9QC00ICBf6oEM6sKMDQFRUSY2KPSXgz0kCGpkTC8TX/rL8JC+JC/cM32kBjbtx0BY/EfZhP0wgbJl81Y5GH9QWrVsI7Vq1WHgquWxEaJk53brJk2aNpOko4mydds24xnAdA8GibH7gXG0Gi7KUa1aNZBtuGRn5eC3kSk4OBTlIUY2rN+g/XyJ8I/XqQkyD849F+FA89PBHxc06ZBenNrix5mHUhPc6UBIiNE+jiYkmAsnAFb8BGgRNhAFO9utPhoL/N25c2et1ytXrnSN8JlKwIts8TmvzA0XIbBge4DXOME5GFoXw/Fs5WmO0Qzt7KpoxcHcMxN0rQBoPlHDiIffEydMUDOXI8Z9+16pfWQ///yzVkBOWdBIKNzvE6QzNzy/nzwss47mGgctvvriS3n0scfktltv0wmv53btBjN6gRIZTX72qdBZ30k+hQdofIP9Y3v37UP+BUiNmjWKTb9GaABoBrP/zwJNcD7NPPRGCDTJEOS91VAQ7IO95hoOTOXL22+/rQMwHKgaPny4rFu7rpB26Mc/A6eN4Nh5SOeuhCVHq1attNCt37BBRwr5nYXSl2O/EVt/9g/RZWejhaYn+K5VHc94gy0ypwg4oBXQxCswleBIeEXho5JBJmpQloZg9QURRouBbLjOe5TLkledmq2efrq/M3z2N109YKA88cRT0BLn6MgeTcF27dpLvXr14Ye1QqCoVqaf/OdxnTIQ2h+IT09ZLTImAelvlz/eUeZPptc333wjN994k3z08UeydMkSPUGtWtVq0v287trnx+dMuIXlogyWHMcCH0mBiYo3YfqW1wuWPzSR6S/BOHj76QpK4Q7bOL7HJ62pKAQbpXvuuVeGDvtJ7rvvPqlZo6asWb1SXn/1Nbnu2mt0NJaDTFY4dI0bN5YOaLiqVKnq8sWPMwmnUYNjcTp+gfaF3hf11sI3f+48SUtNdVU+d2G1HCssJwRPmTJF9u3br9fi4mK134chJyQcUZPVqmQEW3mdhY4HOCWjCPm4XFEUvkZiZWc369d+aBys/BYoLysgR1/5gGclLAxT8TzBkUL2MVFG9nOx4/vnn0fKl199pX1y7BOiKKbCkVzdjtCwCoJzy8zrjBaveGq17Hdko8A72i+mzmhcfN58Qkb84JkbP3z3vfY/vffeezJt2nQZAY3yiy+/kBdeeEG1Kj6nsumfSx7XZ+HBjeJRk1NlELZZ+UCJjeNIKiPHtOfpbZSNg0wWtJwg/ML5Z73vuu8hAn+z/7Jz547yIMhs/G/jZOKfk+TpZ5+FdldRZkybBkL/1hUH4zjVZPiwYdKsWTOvcPw4WZSsVJQMhWvTKQS7cuhOBg3q15eWrVvLYZiaM2bMNFqcVzKw0HFBOKcGPPTQg7JmzWotsCyLHH1lQV+yZCk/CmksfO+3335X3zhKyULK+zrCCM2OnyROTyjpub5bCA4Jlq7duoodJtuEiRMLm194nkvLOO3EiM23S5YYO3bskMMHD0qLFi21MsXFxZlBhDCeIxkgmzZv0ufcnfQup5Ub1ymraogGKrvLcVoHCd1TS2Xct2zZrNc5H5DmseWUlJAenNpCLFm6VE1ndvrTXA4LD5PIiAidKmIHwXOPfc0AAp9833L8zTD0uwvuVMH//OeSu1nTppqXnN6RmZmp14hAaHC8zrlunMrB79SoSgqrK8KSgURJkzsjIx1+iQ7yNG7SSG659RZ56523dZ7dmtWrcN8tA7sv+DaS048ygPIEP83PUqPUBEcPvJ33RF7Pib7HR1Efg4PDZED/q8SR65AXnn9B/vhjIsjHFExWEs42P3r0qHBK39w5c6RO7To6X4mVNTIqQvoP6MuuIPnqq8/laGKCFt48p1nFMGPmNJk5Y5pUq1ZV+lx+qQrPTnHt8EYy85Od6daseOPwW/88KgnkuLxPHwmLCJfff/tNpk2dpqf5s9IdBJF8+umnksM+HM3AkmYhNZI4yBAMuY+icmfpoAPD4oTjuXPn6HwuJR88TVPbmNtGC2W93blzl6YRyYL3OIJJEqBcS2BSsv8sOCjYaFN4hyOiC+Yv0BFZQ+OGDFVwOvxT0sSvZk2bqT+7d+9WbY5gHxvl4URndikgYJM+cMwP+hXGEV587t61GzKZcOkPnzF9lyY9SaZ8jtNlOrTvINu2bpUxY37h4wVx4nSdN15/XTJBOjfffLMxi/EAnZMFD04HiVzOEwyPYVEG/q1du0p69jxfnoKmnJWVrXHJYRcHnjty+LCWs7hy5bT/jvfY0HIyMbW9CRNQJtU/P8oCTEnaIJ7uZFKXDHJa4CprJ6XFsUBfffVAuW/QICWNRwcPlmuvuUa+/fZbaF+/yZtvvglCO1/GjhmrfVMffPiBTouwtKiePXroLPS1q9dIN5h0zz//f7oo/+677pK77rhDctFqc/pIOWhHrLpaQfRN6/N4sIGEQ6RT587ad0PN5Z6775IO7drrvK0enOYxYYIMfuQR1/MlBzcT6Natm+zbu0/OP6+7aoFca3sH5B50//06742kQELwRIvmzUHuUfLt11/LY48+Ku+8/baSAcmpdu3acnaXLmr23nrbbfLa66/Jl0iP++69T1595RWdtOpUE9sUKe96y5+8RnOQ2vG2LVvl/vsHyS+//CJffP65XHfd9Qj3G6lRo7oOEjAflDARNsm0BzTlQJjFb775hubFTz/9JFkgfxIGHQMgGaoJigwIhcb6wIMPaDxf+L/n5aqrrtL5bx9//DHy7QZdl9yqVUudskLiKQncZGSWzjGfOSmZAxK/jx8v991/j4wf/6usXLVCXnrxJXnggQeUhPv3H6Bli+8nHEmQH38cKlMmT5b/Qzz8BFd6KEfgs6xS8pSsZGAnuCczkNR0JgW+G8rwuFkCsGCxcnDlQN06dWXP3r2yYcN6WbBgITSlqTBPVmol4kLtJ558CoW9tZoObOXJ/bxHEyoqOka2bd8my2CqLl60SPce69Cxozzz3LNy+RVXaMvMmsuwuAXO4sWLpV2H9trPpVqL5aA5cAXErt27pG+/flK3bl0lGMatfYcOuuIiKjpaKyjnzfW68EId/WRFHfvLGGmC+5dcconKxUoxauQoyQbJckUATVBP0Nzs3v1cXVq2ft06NQtnwkynrI8//oSS2MoVK3XEjzPpCVbyypUrS0R4hMq4Zs0apNcGJQNO36AWSLOSpt2mTZuMv9DmOEhC7SUGlXzZsmVyyaWX6nw/xpkm9rixv0rVqlXlssu46iBI05grPXR1x/p1OiF78SIzofiNt95UAqUZzPmHjJeZV2hTPxKOHNEtmNZCNpqdV1x5pRIYR8p///0PaduurZzXvTtTQNOJ0zo6du4kaelpGl/OX+OyttTkZOnfr7/OZ6yKZ/isBfqTnJwkN99yi84FJKAr6v9JeO+P33/XftPLLr0M7wXo3EjuZsK0XrxgkUyZMlXGjx2nZY1l6sWXXkI5Oq9A22RcFqEcHTp0GGXkbLniiis1rfwoDfIlqpiVDCfOHHgeGVWmzQ69Y6H21NTIymrxKU5GTANKysKVjkLOSstlPpwGUr16NdWUypUrrx3mhjiMRmM+TeA0w7JQmbiygbPra9asqXO4qFUQVtlk3xMJi6sL2JfFgm9kNuRHGWiS8Tn2hxmzyowq0qQJQuXX33a7PkuZaAYtXrJYroUm2rd/P3n//feVpEjCOTlc8F/YL0+wj4yOhMS1lCEhwSCz5trXxTCtLLR2tFDzif1qkJVTG0g0XGtbsWJFlYdzyBgvph1NLxIN5+nVr1dfJwgzzRh3aiocqeRII8OnpkvC5XXPesx+K5LcXjQ8DIMju0wDxonmKqf5qJZZkCfGXOW63eSUZImMiFRtkOYz/WJYfJ6TmU3cYF668pBycdI2zX760bBhIyUvkq1FLtZndjZHrznVJEgJjOC8OoLpxgX7vM/8IVkxDDZSNEW53JCNYVZmlk77KVe+nA5WeRIoZWPXCNffsp+Ya41NOfHj5FG2+8H9owiOBZcVTPuSUPFYwFkwWVhZ8LQ/B4WUn9bcNTfBGc2LlZQFmn6RoNhSUGY6Vn6C7+v0AbzG6xwlpAZHaHKpHIboCGo+9JvrVdnX1gMm8a233ep+Bu9wh40HYeawb+6111/X+VZWJnJysVUprU8LDI/xZPzMLfpJZ4jPGuFUQvMAr2sckTbUHFlR1VxEmEwvlY334XcQ0kNNXPz2TAedOAyYlQf00/hHuTn4ohd5H88zWazv3ECAacuJziQkmu8GJp0Zjpkwjbxk/rjiyHdCuFkp/izZGF+CsufAryCQFTVjk2/qlUL9VTBvzDftgwOMfIZcLYLjMwyHZcmkORsvThsJ0nQtALxleWGY+lRBOAZsNEmK/BfACcx+lBJnGMGZYuMGvTt4MN71yxdORswzE6ygFkg6NANvvulm3XDzrrvu0oX/XKrFpWbTp02VET/9JPWhcUycOEG1t1MF5oE3UZ4sysYv6/1SFbXTApOnHDhyl2yueiE8r1nwrD5lleb/bZTtbiJ+gisFPAmOYNy548Q9d98pqWkZiCXIAdqDEyYPU7lKteryww/fq1nlesP16ceZgmMTHPOrcJ55Vh8/wZUF/qEEx7WghPn4NxKcMb9o/h0+fEQWLJivnc+ZmVx1UEE767kkLDo6CuaW6Z/y14czDyZPvYnMyueiVaWU1ccPL9jQsFSqbEzUfxjBmULi4rl/BTwJzrf5gvQBkXn2J/h6zo8zB95a+fFgqo+f5MoKJDjOAPDVB3cyOLHcLAVIbP8mcisJqKH5zRY//Pj7UGqCowfezmhrblfaMxl8g5pQSdzpaV3Z8ns7goMPnjL4es5yuGse8uOUgVNAuN1UDpzv8mK5koENmK+8tJwFtnNBQRzN5ciwr/As5y4rHKk2MwNMuSlqa/l637hAhMVP7jL9X8apYB6f4Ig93emhGz/88A3Os3vm6ad1NcjpBE1ZrtLwJL3jwZoaxG4O1pwTsQbsublKiDqF5T/ccJ6ieXCHisyDK/ipiV4yUDLuxb969WqdVsGVDDxngWHoJpMe4K+VK1bocqTadepI/Xr1zI1TmsFc7+jUBfGc5MqBBD3DQLU2kxaEKZjHl8E8XzheJw7v909V3P85MOXFzM87eChe7r/vPunatas8/PDD2tdjiMTkpTUH0Bo55Vw8uz1HVq1arWuBueElV1W4ucZ3+tI/vstJ6VztsG3bVt1WvmLFCrp6pm3bdlqWfZEW18xyNdCcOXNl29YtOimdy8jatGmjK1DMPE6GYZ6nzLoVF+TnihPu7rx9+3aJPxCvZ1uc3aWrrrDxnAx9pqKs++BOG8G5J/qWHFTRORP/wgsv1H3GuAUPd9Qwhcq9USHD5Gx9LkXirq4//PiDFgYDPuMhTBnC7DRil3vvvU8Ps/n0s091G3Grklgwch5fBpMVpc0OtvaeOG1K+hkHpjuTlOmalZUp77//gYwYMUzLFNvHho0bg+Qeku7nnaerIajtcBDIaFkkPPPeiy8+ryedcYOHF158WW655RYlSysMX3nL+1yw/3//93/yO899cObp5HGnA5/BQXowEldJcvWKJxgmt/TiOb+TJ08WB8hVAXk5CfmWW2+Tx5/4n4SGmEN/CBI0l/pxEvag+wfpztK8x/W+lCMwIFjuHzQI5fTeYkn1TME/dpDhZMAWhxNluTqA82I++cScFkUC8VT1mc3ceJHb6ZzT9Rzdm6ssYBWg4mG211m2bKlEhIfJWZ3POqMLz38N2ocFLWrevLl6cNDXX32pm2ZSA+IW5Dx+8YFBD8iDqPw8ycwa4TYkx+21lsjNN90ko0aO1NUYJB8SBldnHA8OkM1bb70pY8f8omeJvPPuuzJ69Gj59PPP9HwPfh+Ccm3MTzdIvk8+8YT8+utYaHlt5JMhn8mo0b/Ix0M+lUYgZG4w8fVXX2vcLDAsLkHkZg48SIna2oeffCzDfxou7yLcWrVryscffSg//PAD4uZ66T+CUhMck9nb5dsKXzmxMxncsPoeeCJVn8uvkIPxB+Q7ZDAz1Gx9E4jClqcLw3md6xmfh5ZnltZwayCzmJ1+kHfIidrJi+ZbW2B8WlsgUU52yFq8ycLMdy3HVlIBj3jwMJ/j4cRbt25WE+byK/pITGwUwuaSMS5n4hIqaAEu//PzKTOXMHHSL9eCUiavdIKfXGfKg6npB9/l4cQ8pNocUOyWpzD428yr04KPL5xg7Pk8r/PT6rRW4Hk9q4FxRlpYHdNWmvC6lR5sUNhNQLOLwXtqqfSX9801hmfyjX4xDiYNjL+8ZlzxoIxMbyMr4gVvIbl+19+QVR3lY76qK9rBz/TPhAbGE9OSjibIE08+KePG/y4tmreCtn+jnv7F81dnz5otPw0fXihtxo4dA43nbtm0aaM8PHiw7jbDidsMn0XBCtcXmEb79x+Qcb/+qt0lX3z5pR5607p1a7VGPhkyRLdH/2XUKF30T1+t/Nq+Y4ee+Mb1r19//bVcdFFv6QDCuuyyy/RkuNjYaBk+bKhqljwHhI5kzG6cmTNm6E4x38OCufSSS/VMWm4A8OGHH0oINDe+l5KC8NzR/NfDXUrPYDDjuQ0RdwMZNmyYtqxWa8t1g0M++UTXUz6Olq8iCg4LCzU+FjT2SbAF5x77r77yqvw0YoQc2L9f3/fcYoikuXHDBj1nlIvATaV1l2CaG4sWLtL91/gsyZduy9at2rr36t2bgiqxco81Hk24b/++omtE4bjlE3fe4M4ghggMqA1u3bZVDz5++eVX5Ksvv5Jly5cjPu51r8cCN/ycNn2a7pTCuOd5VFiebjV9+gzZqLviGjD+XP/JhetTp06V3bt26Xt6D3HhVuHL0Xh8+ukQyPOyatDbtm1XDYZpYIFktHv3Lj227yiIhAfxcKIztzPicX1/TvxTuxi8tZXiQGLiId7UZnhkH7fDehENF8+MJQFQZsJ0oB8bW7du051h2rRrL7fCvCNJs9HgZOuKFSrCFHxC9/BjXlBuC9z2if1lJIv77r9fTSbmQ0m4gWk3deoUSUvPkN4oF3Fx5fR95iHTqnat2nLO2efI0cREPTRa9zZEnFh2Zs2cqTukcMcWbnxgNaz0s0nTJkqS3Ill0qTJep1gnvEcX+bLHXfeqQ08zWGGx3BbtGiuu50cOnxI/vxzkuut/wZOI8GxaJx808EdQ15//XVoA049qzQ5JQWVzC6zZ8/S/i92vva6sBcyNFjNEu4oy0GHG2+8Qe695175/vvvtJV+BRWVG1P+8ssYSQX5KYnBsdKQPLkgnmtKKasnwfHkeZ6a//JLL6s5wDsslLt27pTYuFhp1LCRPs+/5Qj3AZg9P4NM2W9SCHhm4YKFep/b9ZiF3flKxJ+jUvEg4rfefEtNlA8/+EBuR6XkfmTWgTueMnmDBZryPfjgQ7pLCImCz1MzGQttYtD99+nmjAyTFYZgHD4CEd2HNDLH+5nOcXZS3333PXL9ddehARkio0aNlPfefVsG9O8HzeIr3UWDz5mGIEDmz18ggwc/InPmzlUyvPOOO+UbaCDDhg6VRx5+WAYVmIG+NNDCoL9Lly7R/tZHHh4sP37/g456vvbaq3LD9ddrA8A+p+P5w7KgW3chfdnXRXLThkI1PNMF0rRpMz0S8I7bb9eGysIll12q5mBHaE/cPdkqJ9bBOccCyyX77LhBwKWXXqZE5akdcvOCPpf30bIyfdo0LdMkf+bLFDSMtoBA3V3aIjctV66w+yH96RPLhwUSG7ePYiPPE8QUHknDBv/qq69WP9R/xuU/gtNGcDZWBJcrKQoyFgWCLRFPOufp5UsWL9Kdezdv3iJPP/kEMj5QXoWmUK5cHAq9ad23oeW+7bbbZP369dKz14UycuQoPQH9TZCH3ZGnHbw8pBgBoJgBkIs7fuRAUzMFwDhLBoIVj608K5Y5T8AmzZo3l9tuvVUqVaqozxDcuol7n7GTWPtrXO8T9IsHtFCzMyfEm+29v/n2G9WUuCUP73OHWB6IXL1mDRk9epRqQ6ywfN9XElpyduzYQZJ5evvevZouBCvOuLFjQcwZcujgIb2nZhwIkEQxe+YsJenGjZvoNkfcjohmGTXlTp3PkqEgfu6t9uFHHytRvPfuO2r2sFJSEzKk5VSziZte8pDp995/T36HdvLzyJHSsHEjmQfie+SRR5CGxqQ6FhKh2Tz11NOyAXl3+x136IaWzKs33nhTtbp33nlHt446HsHxrNQ2bVrrtkssMyQdJWWQDT8pP+PTt29f3TiUe9xZGAxSprln0htlinHE8/oe3LHALc13ooGgfOwPJlF5xpnaL3dV5pVly5YrGZGc6De3aOKFRo1Mg+mGaXA5k4AN1/r1a03Zgi98b8f2HSofDz23tE0L/EYzl2Vy584dqun/V3DaCI5dZpY7WfCwX904MiRYnv+/Z1HpP4AZkI5KcLvUr1/ftM4ACy5JgQfUPISCSk2IGh6ncFx55ZXy+Refo7CIvPfOuzr6am3XrVsiqXyWluFdgfjbbWax5aV/NAuoHZgCma9bbHc55xw96Z7mqlUhKBc1I24w2Q4FtUXLlnry+iaYUJ8N+VQ7n/+ESXbxxZdI3bp11Kyg+V29WnXd9dYcMk0iU++KgPE/G6aPhgNTzphUTtl/YK+kpKZI46bNNa48v4CVgtTO+KdnpGvDERoWqsQ7E2YSZbrkkovl62++1krVoEF93aRzzNhfpUrV6irnrl27XURhzq7IsztkA+I29Mcf5aKLL5Y6derqVuM8dq8czLRVK1fJ5i2bXanKdHSnpSdIsNy9+KWXX9TDsHkmLPOO8vBkK+7FxzCoKRly9c4nA5JvVFS0DH7kUWhNwfL0U4/LjTdcKzt37ZAdO7fD7XQ9CWiiFpOwJwgeVE2J2CfMckGQlAoAeXmITXhkhJIwSZt5pqSNJOFmqRxcK0xwBtx1OiIqUnJz7JoOfM/SpqnhcbNRpgfJzEob+kMip798jt0tZyrIDywVvnP0xFFqgqMH3s7mJZ1rW65SgvuUibRq3VIehiaQnpYukydN0sXr3KqaGa17c7FQwFF74qnk7JyltsJBBWY2Cxor7KWXXqoFSs80wLvWZpGKAvlJJsacMYc785LRlOhIiBo1LUjmeToS8I03Xqfm6bChw1CITX8Vw1m4YBG+BcCcvgjvBaBA22TF8uVKLOx3KV+hgppOjAvfZyf1NdddK/acXJglvyIcZyFTyoDhslM9WBo2agi5AmTVipW69x2/c5NMam83QCYYrAhvKcghVwlg+7adkpWRBdOmi1Yuuz0P2u5o/X7zzbfifdN3ZNKf253XBKlfjsYjRcaOHQ3Ng/fwsI2z5wPlvPN7SrVqNRGOlgRNl+joWJ2KwR+cF2YGV4qDE1pxU90C/LrrrzN70TF+TG/Iwbxjmq1fvxFxYKKbNNc+VXUFmaffKfP1N1wHbXK8dIY2umvnLklEvo8bM1Yu7n0RzPC71DQ3Zvux5CJMOhd2vFYYSvoIm5oU/WQD4Pmc9schXiQx4kjCEY1beloannWoxmkRoy9YexjmokxQO6QmRzM02nX+K/3Sffa0IDMNzABQOBowmr/mulW2fbmicTrdoISMgadz52zJwRw6LSjQ4Fy/TxZM/KuvHiCVq1bWvhAenceDQLgrLzObLjsrSw8A5ilPVSpXcb3pBjdb5ERPSrNm7VpmNQqJq18K/1hYWDF8ZbR1qeg985skRvB8hsaNGsvy5ct022yCncjsq4oMj5AuMGPZGczCvg1aHV9fvXqV9i9+APPvA2iddJ/ANOW24sT69RtUTh0B9gGK1BimTSRI3xyxh2sB1NhW6FblvXv1gmZ5tiyG6cnwuIEkBx3yEG+aUtxElJVl546dWhF4kpeaOx5RJfl269ZV04fmFedeuZGvHfO85wltDJCmCqZxIfC35VzAMySFxMSjMnXKFBk2fJh2+tMsZv+bm8i8/SoKhk2ZG4H4v/rmS/np559gMjeU5i2b6zQMbj3fu1dvnTvmOfWiNNC+M8jI09gYby1WXuRJc5KaG+MRC02PD3H7eSZ2RmZWkectMMaalkxiOH4nGfJ5B/KC5jev8Tb9pmP/H+sKB7EYrjlPtnAenSkoC47wxOkjOJcrLUgg7O8KDQlTouIwPwsHM4yZRwJITk5RrYkaEKddeIfMAshhel42rWYevrq0MCaw+mcljXnXVCgA97WVM7/c111guQkNDVNz+qwuXXT2Ovu8KDcL9Ly5c6RRk8ZqUlNmXudqDb7IkTAOhLBjnptj/jRsmJqmPA+2cpXKrq25TZ+XN3iJmkNsbJz2AXJ1RQJMF+1/Gzdeunfv7jq5/Ro1kzkIwYaA2mNMTLSaxyRcdspzWgrjTQ3D2urbAkma/rAipUKLoySMB9OD6cJ+P/YVHhMsxQWgD5Yz4BkN3333nfS44Hx58IEH5f333pNvv/lGxo4Zo6sC3I96+mPA9PcEKz4vUSZq9PXq14OWXF7P2h05apQ8+eSTkor0//yzz+GtW4bC0NiZryUA8ykgIEi1VdWuvEwa5h/LAh3LMLeLJ2jSUqvm9YIG1wvMzxSUb2rmkZFR6j/jo3mHsszf2sh6JATLN8mPDRqtDj7rmd5nEspaqtNGcFzJQFfyYuIbzCAr/6hpBQVyP322kqZV53V2mLP/iVtus0D4Avfc5/vso2HFVHOTL0NCrRT4SsKgn1ZrymeYA3pNrxhYBdF6jmEGooBz7hO3Cuf0DA5gUFtITkrS09PZ6lKzYJg844AYPHiwHpzMTv3hw0FwI0Yowf308wgZMXKkPPHE4xpX35qGabkpyh133AmT1yGzZ8+GSbZbT+RinxjDYV9kTHSMTjPgyPDadWt0EmxsbIxWBE0P+EOwM5rz7zw7rNmIcMSXCcQTzNhYMPaaBHAcMKE/SnpeTt/HM67kKgRz3zhOSP3gvfdRcSvJ2+++o314I34eKaNGj9aDXywwvhaMacXfbllZ0Un01NJpzvFeUCBMP5i4wUEhmgc33XSTThPh+bKmrLjfdwPXlJR93SsKnn9RpWoVXQ+6aRPPmDVb61sg2W7avFm7Jagls3uEZSgaxMgDjFjutm3bptcsZ2HdunX6WQfPRUaASG2BcAFSTw8+ytd+Wvb5WulN0Fzm4T7ssqhdtw4aLnPWhVVnziSUBUd44rQR3OlECFoojiblQBPh1ARvUAuZM2c2vuVL7dq1lGg4TURpCxnOUTyq9WpquEBzgwMapjwULnS+wMrXrl1baQrTb8pfk7V1/eH776VW7dp6ApapnKbisxOdvzlthaeG0Vxs3LiRjrRx9jpNXa6BrAxzm89RizsWGkNDrFS5kg4ETJ02TU+0atO6tZop1CxbtW6l26bPmDlDK/UNN1zvehMSoXSxklG21avXMKqF44oHOBWEpZBy6gE2/EMFJgeYenXiRZRhkAR4EM6Uv6aorJ99+qlcesklGg41L45qkgQ8CdNNbEVBTYXnlg7o10+GDv2RUdE8NpXbxEm1HcCTLEsLjsZefvkVKuNMpLEOwKDMWeD5DjNmzFAZ2FXB8qjy4HmOgpN49JQzj3csTJwwQePRq1cvcwFgPJu3aKFxWblypfrDhsgC4zZixM96vWvXbsU0kP9OlDpXmVSeTguRV/kmK5ce9JTi+hLZum6cDa3a2V3OkbTUNJk/fxHIiQWMpiln4rM1WysTJkySoOBQufDC3mjJzSnxrEgMZsrUv/CcHS0fByZMIePE3f3796OwcHUEHoJjOJYzsGQwCcBO/2uuvU727zsgY8aM0w5uFkxqDlaFYqXu2LETpZY/UXipNWkF1LvQIkGs48aP0yVDf4EoSUhW5SwO4WER0qJ5S9mwfqP8NXkKzGGePBWjLTzD5lF/h48c0kOUSX7UBixwztaVV/YVpyMXGtPPkq2TX/PRAPBkrxzEZZ+aiowhz1RlNwArrIN9cahUHNl05PlaymTSxP3pzi/LsVGxDmdm+mjfqmsaDUk0A6YrCcu9UobEYFaI+AIJQo/yg9/vvv2umrc8fJsn89Nl52TKmLG/qEnIPGDnvSnBhKdsxwaJhWY1zUPmDcsIB7FIdBMn/qGHdutzKEsMlyeQTQWJ86T8gdcMVLOeJM1+5D59LkceBcm4cb9qo8r04j2GsWvXXhDmbNXcbrn1VvWToEZ48cUML1hGjvzF7CSC66YRMFrsjOlo6GJj5aabb4R8+prCaijONFAqzxygOxlJS30uqndV428zubI4UMzSJmq+djbTVOIIKvu8PMFMq1ylikye/JcsXLhAn2Pmc+CBUyA++vAjLXRPPvmUHqpsmVTsO+Gp9Nu3btMRQXuuXfbt26uTTL+D9kU/wsJC9RDq8HDfw/ieYMHk9IgJE/7Qjn2evs75ZdSQrHf5Ub5COdkL4liyeLGshinBIX1qRlu2bNET4jnYwOcfffQx3AMZF6qIvrFr1y6ZPm26JCQcUVLt6doEQFMfnyNgAu+F6UqT9Zprri3QVikzD2zm6o+lS5fqFAS+xw7/hYsWypCPP9FjF2l+c/4Y04SmO00nmsTUWnmqmKd4rJycYMqT6fv17y81a9bQcDxhSNuchkazbtXqVToPjmtG2Tm+Yf0GPZx61+7d2n/IowmvuOLyAm3W2z+CgzHVqlWXcJhkTP8pkyfJilWrZAv853zAadBuf4ZmEwuS56J4jli7c7Rw3vK0f563wdFgLh208o/TPN6FGc210JzKUgXljmnCRe2cirJ8+Qotdxztp2XBAaM3XntDz1rti7Toc9ll2uiQ3KkFs59wJWTkRGcSoTkKM0gHmN595x1N+2uvvUbzVLtMAMa9YsVK0N5W6dGUO3dsVwuGUVi7bq2SO6f03HTzTXrGLsMx6eXWhM8c5KuVwcamLCQr9W4ibEc9Qe9O/aEzTj1MmedRshJGRkbrVc+osMBwvhe3xDl8KN4VIidJUMMJk8v69JFnn31OO9JZGDkfLTMjXVcTsIObmhK1OhYGFsD7779fp55wGRf7x8qXr4DCoZ76gKms3HKHFeCWm29Woo2GFrUIFY3+sdBa4nJqADW3hx56SCtiFoiQFV3NJwRCkuROJa1atdXKw+venf+eoNZDsrn99tu1kg/9cagOxlBbpPlDM7BrV2i4aem6wwTDDYY2awq7ORd0797d+r4ua0NaBnA6COQNCgiSTvDrrTfflAo8ZxXv8L0RI0boKpEbb7oZ6fqs+mOB2h2XRE3+c6L8AFk6de6Ed3wRHKNr0+k7bLg4mTUf5hQJlvdp3r/w0ouqzZ53/vny1ZdfanqY94qa7fSL8WeH/WSQ2/fff6vL0VJTUiUA6RsXF6sjqa+++ob22xaaKuShuVE0nmP7zVdfyjPPPaf9dpb8emg1iHb37j26qoaHWjP9GefExAQZOHAgwuR8OzNhXU1kpGcbNCwcOOHZtpwWQv8YR6Y984UrcDZt2KzTSQKRb3hF/WjXvp189NGHIH6T9noVcWd4SclJct0118juPbs07rxPPyk/u0p+/PEHEG2MphmveeeBG3zH5Mfpxz/20BmPAlMGknNhcWZWtvTu3augkHuDsrAVZCu6ZfNm7VSvVbuOtsBc01eIJCATxaK5tXTJUlmxYoX2xdWAtsHj/9gPxl1D2Fl9TtduBQMDx4KVtGtgEu/bu1dPUWeFoglTGEzFfK0sa9euVZLjyB5H1Ro2aKiEYAjVLa8hI99gsCQxmiXsYGZrT63QvGJWYcyfP1/DaN68hdStB43So0LzGRJhYlKSai1co8u0qAn52yMt2J9H05QNgIUd0BrWrVuvqyEaIa08+y/ZWKxZsxpkeUA6n9UZBbjSMeXnPY4ssx9q6bIlWlEbIB3OPudsncjKqSPUlDp16qykbd4pvl+ScSFJcj+3Awf2aqPH+XTc5qpqtarFVCR33JhfnPjMgYFWrVrplBOrH4uHZvfscYG0aNlKfvlltIZDMO/ZvZGUlKzrfFcsXyZ7UAZ42HgPaNM8gIjdAxxFJTzzlt0oXLs7c8ZMWYCGkecMs/+RC/XPOaer5iXhjrv5ZJg8lX/GzGlqjnONcQ2Gd0EPPZE/AqYty8bx8fcR3Bm3H1xJCc6zwJQFVKVHvpqCcawomFaMhYCtIwsrCwYLKDUp95wy+mH84fMF/ru0B7buHGbndY6QGhw76ayk5YcVPk95LwqTinxe//iJcCgb5TUmBZxHGlqF2heMNmA6tq2KYyoD/XaPnJHo2FKa3575w99mVJajvzxsmZoE+6qMOQXCoDwuv2ni44fOnqfSyQbHUz4Tpn6D45w4kyfHgnnfJnaHOaibI4MkTZOO3GmF+eCZHseuEJSB72ZmZcjjj/1Pp/DcDM2afWKWJlQYnunhPlzcyMWyYe7TlL/jjjvk4Ycelnvvu1fvu+NmwmSZYV7yAG6a2/SHjvnj1sJc4fE3XtcygE9aAMwHLQe4Rb8s+CI4DR/hcpCBZVdXNOBPTT7tL/aMV3EwZfDvwH9qw8tjwVNsK4OPB+sdflivlPRdy0wi1HQESvpuyQoVwaKIsOAvw+Avvktq03secT4W+JwVR18y8r733KzCFdrAyM24mrCNbOY547/57jkNgteJ4uJswi5ZuhGGmPjN0z/jh9UIGRzPT5Mm7A7gPEkSNfvFLHmPBxNfIz+dpalxS6PPPv1MN1mlVVA4bkZOxoHwThPjp/W8+eSz7njxv+ML6BmmFQYvsREA0+GXZ94VlsE3TBz/DvxjN7xkcv09SVYUHuWhxDD5bV5kgSpckI+HksacVMYK4f7lfvXEhD6WeCcmuxX3whIUrlRG5pLUiRMNmzD+enpuwjN+We5YsCqsGeGkmcsBpZLIa4FBWZXeMw40UTnx3Gxj7i2HOy99yVic/G5vTkBAL2j64NOSqXAI/x2cNg3OgiZ6GYToKXbRguUbvqJa0nc9W1+rRS4pitNmjgV3GG4yLWm4JUsbb7+Kymjktkxa46c7LpqT+s2XXCcTZ1+w/DbxKC4ux0PZaCS+0nXjxk3at9umTVsdGPINxsFXo1g0Tozvicrq6W/RdKd/VhryXkny5d+jwf1jTdTTjbKqsKcDJSXC48F3nC2/i1bOwtfKRoYzCaaqnExBLjnB0fuCGlnspgTecrj9KZty6jdR/fDjuChaof3w4/Si1ARntSWFnNqgbgc1EZ9/FwrLcmxXPDjiZQ0unOkgr5TMGa2iOOcbvG65wqDmyMELfpoRXPZBudOV1zkaybTmyChHFnmNz/xdGsOJwDt9ju/4Ev7pCKYZuefqBEb1WK548KblCCt9TUDFTZf6L+OUEJz3FWQDL/6NKCyPb3dssICyMP1TSK7ksMjKl/OFY93j9tk5kpGRpmlFZ402Mo3NFAfupJGjq11oTpkKWrI8ODPgmT7Hc4CL7HWtM6LI3UIKwTP6x02Cog8xDek3yyUnNJfAk/8UzngTlRWArT6dL3LhfRYgTiblp6kwheH5zMkSFI954+6yPL3onwZQjc90KWtQI+MhM9dec63s3bunIN+MlsYVDXb58osvdSt5ng3hvRHC6ZDxdILpfvDQIXnxhRf1XAuWPTaUpYVVnpme3KmZO0SvXbtGGw0uLyyuHvwXcdoIjp2HxpU04anicw1kkgwceI3cfPMtuoTFGyw0PG+h75V9dekVl1JZO+gSLFA8d+DRRx/VtZMHDsSfVObPnTtHxo/71efuJGcySC487f/wkcO6usFtFpa9Jsq1reN+HSerVq7QLY4MuTGtbbqNd5/L+shbb72lp7XzTFKzZtlMpeB37pvH5/41QLy4bf7Eib/LnLmzUFZBPnClAee28cyH3377Tff2a9+2nVx2ySV6vkeLFs1kwFVX6VJDrh1m2pv5m1Z+n3i5/6fjtBFcPhouy5UElknIOUschufSqTVr1rjuusFKNH3aVF23OH7cWF3u5Dlcz62bk5KSdBsZbj4ZFc3tdk4u2v/EVpFm4aD775cLzjtP1q1fdxJFnBXD0xUHp9SsWV1uu+NWadG6JbS024WbjVr9QlyLu2P7VunR4wKZNmOajBv/qzRq1EACg7jO0iFTp/yli/SHDh2qeXpi8JTvWDE8mefoisPxn9NyrN9KkPLsu+bIqeV8gFbIc//3nK7GWL1qtdSpW0cGXD1QT81q1aq1ngHy+uuvyaOPPKJnwnJis1u+skibUwvyQ1lKUGqCI195OnrIT0+UlNQMGDWaVOyk5ozufLnu2mskz54rkyZNxG/zjC5cBnmxz2fLFm4qyO+5MnPmdFXRLX+4Fc3B+ENy5PARadashYRyayRcI1dxzZ/Z6oidwJTcCttK4uM7bR2RJer4ne9SbnhnftNcoIP2ymt4jlsxmZUEhR2302H2ut8xBz/z053trjD4uyAc47913SJwkhsd+2ao1ToRX26QSCvdcPWxMoYGFv2DP+o340r/zDXzm30/ZtCAYJ5wUwKeXsWJr9bzXG7Ehef83q37uTrJlhsekMh0SREyNQONWHZWhqYNu+1M2CYs30BckDYmzYxsjI4lFz/NEieueLDSx8jJ77xu9Q+aOPF93jfPmN8oGYWeMe9a8TbxQznVMEw/mNUw0/G7ribQF+EdfvOvCBhuobCLgv7ROuEh1hP/mCiVq1aRIZ8Okd9//13efvtNPVJzzJix8v333+t6Z641fvyxx/RAIQsc4KAMxoRFfDRMV7nU3+Y5d7/p3wcrNbzdiaLUMWGaeDqFlyQnJpg7Opro+ORpTsHQBlauWA4zK1MLFBfFs+LFxx+QPbt3S9PmzfTIOx44HBRM0jJ+cC84brWTjcLRtl073e7ILIUxJ6fzwJEdO3Zqy8cj25JTkrVCIvQCP9yOcP/OyEyXhKNHJCU5SXKys/BukuzavVO2wgQ7cGA//OdJ9uz7y9WDl7kgnVsGcQsibsbpLtTGMb58ngf00oTj1jg85o1nOigZaHqwALISOWHWpenWQUyTrOxM2b9/n2xB2IcOHda40SQ9ePAQCrRZ/sMlSrzHT/cedr4AeSgbKhVlp9nIRoRpRBOdjQrloWbM9LLkYiXkSU98nmGzMnHtJePLZ20gwNycbJWZ13iCP4mNv+kPn6fWcfDQQT3c2KRLcTA7b/CT+8UxDXi4zpatm2XDho2ahpSd9wsaCCUSfIOc3G6dacw48WBoHtJtPU8wLgTjwTKWAaJgA8qdTnbs2CYHcI3yE9x/jURHPzdsWKe78XLvQO6lZ/lj4BpZLQI+4/lcUTAPN23aIqN+HiXRMdF6HGPviy7S7c65ewmXnrFsd+nSRU+NqwoC5Pb4rBuWDGYHGzaK3MwgVXahbLGscuumFJjSGg/kJfP2TICVKsdPneJxiib6xhfS2gqvZMCf580iMJXFE1zwffWAAbJv3375dfw43VmBrQwrD089/+arr+Ttd9+VT4cMkUqVK+uW1zHRZgslEhwXQv/55wQZOmy47sbAhc4833To0GEy5pfRkoQKmYOCHBIWortUDIZ63/3cc7XgWAXygQcekL8m/yWfIAwSLsHw+/a9UjfKZH/Iq6++qnFnRy+X7zyKFrRnzwt1s8whQz7RyuHAvSpVq8KUu10G9B+gO0NYWcCCxcGMn34arkfn6eJ2yMDtr++/f5Ce3WlNgGRlZIf9XzDtuD3RWLTeCxcskDRUxDvvvEfuvvtupMP3up/cfqRbFgi4OrQqrr88q8vZ8tJLL2s6+IYhWxLIiJ9/0kp1APEiuJUNj++77LLLYQY9KvUb1JUPP/xITU2aT489+j/dEYVbrVepUlU1CR5cnZScKEePJEiFShWkXGycBIUEybDhw7Xb4V3kHQkvfn+8VKpYSbdCr12vrh64Ex0dp+EWhWn8WDZ2o1H57NPPdecT7v3HdKSc3L128OCH9bxckifNPoedu96u0j3cuMyKXRrU5LnDCY9p5LZOMbFRuoSTmjAHS2668Sbpc8XlUrFiZT3M+wjIk7sif/31l2h4QxFenkz4Y4J8+eUXcvAA0glhcfeXSy+9RA+QvvGG66R+/QZIk5/VbHc3LpCJdaHAHPWuym79g/JTe/v888/klltulqeffkrzj9ddymUBmHcff/KxzJwxXe65527kF0+WM9okP1lO3n//I9m7Z5c2tCzi1WtWg6V0g+7Xp0cWGq+A06vNOZEWlZHOLOduGQz42/va8XDapOdKBt1v3TP/SgiSWaPGTbQjmvt5MZPoSADc3rpc+fJ6Ijy3+N69c5dk4DmLNFjglyxZrPtgsY+CBYzExH3f3oRanwU/unc/T67o21datmqFTN8rjw4erH12CALOmK8mTP5WbxXcQ46tNbem4YaJPIyFZx/wMOjt0AqfevJJGTt2DIjvFd0m55JLL5XWbdqoJvfiCy/odtaWn4wLtzSnP4lHE7UlZpw6duqgh8Q8+OADMk23P4I2Bsf4JRxN0HtvvfW2TAHRcb99HvBbvbpZF8ktzltAloiIMF3Az0rWskUr15bkx84ImltMoxeff1E3h2wDuS+97DKpVbuW/PjDj3rKPLU6buZoTECYa9Ay9iD9tm7ZovEhuENw8xYtdQNGasX8bA0TitsOcR8+nijVtElTqVq5qj7PjUp5XizzklsyHQussOxXvfmGm+W3ceOVpLil0HnIT4Jnpz6GRobkaYG72z766CNKrAyDA099+vTRLpDhw4bJK6+8ojuX0G/GiWVuO/KLjdtHH7yv2xtxk1Ae0kP5uOPyH3/8IY8//j+Uzd3SEsR36WV9QPwNZeSokfLWG29qFwG8gmPenUQFALT7BYTF/fE6dToLBMDGl0RpSI6OoPf8+tCDD+oxkxejPFr3eJNbMN13332watbpHnHceZjHKSYlJsvz//e8bhOfk81Dh/4eKEfg0yVxqVE26yFOMbhdT7NmTWX8uHFQpzforqpspffCJGFretHFl2hrxn225s+bD0JbqpsQEjzZnuo398SiZsD+B5qlQ1FJeVIV+y14SAi3ieamk7/9/rs8+/TTaG1HoCB10n6l4qAHOqPQUAMcNGiQ9Efrx+2jqS2xoHBqwKuoMDwo5WJofWwZaQaMQzxIZDwFXrVBFECS1i9jfpHK0Py+/uYbEHoj3f2Bo540o/r17ae76fKAGGqn3PGXhTkLGghN02HQmBrUr69ycesgdu5ffnkfrfB33XWnLEOaDIIWysrJvezYaLDCWf11nmDF3rtvr56mz3lbPPiFp3IxPBIfie2O2+/QQ0wcqHBWY2JgiIEmMbdY4r5r7dq2h7b2o6yDZnfNtdfKgAH9ldxY8XgAdqvWrTUtVq5YKb1699Zth9hHV1AxiwHDp6ZKc/Ga666T56DJcksiCpqenoEG5mmZMWOaasWs1JSN2n1yUrJqagOhdTOd2C9JM5Rk9+uvY+WOO2/TxgAMZuaYIZ/ZsL78ymvQontDdryD8sY0PIiy9DzykuWKmigbOB5oQ61u+46t0IqulbSUNJXXk4hOFExPrnvlTtM8n4P9yFa/oKEDo53xU69oWMxbd97QgqBGm56aJu998JHGJTjYbNu0b/9eaKq36AgsG7PeyId/A0qtwTH5vJ03/Z6Y1saXCzuS11lnddHKtmjREphCDiUSbuOMbNVNFPnM+SA+FthRaDlZyZjJPGuUFflimFUkC16rUqWSTIU29OekP6HlVNLKxtY4HATEA2GInbt26v5v9MdyFqzfppUXiQXhsGKyclG15pbLd955pxIJ19XRT2sbZl4jQUeEhQs3kWQfD8mamgF3Cv5jwkQlc+7Txj4T7vjKQ2nqN6gvKSBSblLJyqMTR+HYivOUrhbNW8DcDVfH+DAnWAHDwnlik1NNQhbmEFRODlyYwQETF1euucB+N7v8BFl4fsHV1wyUrt264V2kEWRkX2gTaC833XwzSo9HRnvlMTVl3QkYMrDPR3dHxh+v0S8NFsWPFZX3GCf6xzDCQpmO1p5ylnzejufIroEGu0MPpHn6qac0jUO1LypMN5N8CmYcRxdjXQci0xykOT9rzmy5DoRoPc84MZ9oerN7gX2yBLVeOv7xIJ+eF/bQXYCtfGYcRo8apXnIA8apodM/NopsMKkhPvTQwxKoh2O7UVCe6IpUDo80dcWVz5rJ0xwkQHmLZfeL+z12JfB823nz5+lhSjx+kl0DPIN3y9Zt8NIMfHBHasp61cCrEdeLtM+O8WB61a9XHwT+svo3Htow6xjF+zthar/bnQxOCcHReeLEhPOOlulj4I6u3DOfu+1mZ2VDg3G6Tn3Kl2Y0F1BRuP9++w7tdSdY7kbL04pWr1ktUZERMHuaozLRv3wlmXLlYrWzlhsgZmamwww7qKZMEkinoPBpDrtjZC55X6N/YaodsjLzOisFiZYERe2QFYzXCFZadgiHgIT4Ln9bz3Mbap5Rmp6RofKrg7nKgQGCz7vDp19QMhCnBg2g7QXwgGa3OW2eY8tvKoUhd15xjfy5vtNZzxJKnki3xWhIAoNC5X5oPmxYqEGo33iG5Mu9zxgPkqcB76inCjNz37pnRhd5m5/8o9bE4ElwvMFPvYdnrHi6NRBfzhyhx77IXr0v0nQ2WinjZ0ZJ69WrI6/ClL7uOnNqGKPJXZJ5bCKXT7HBOAQNjNobt/vmKCUf4s6/fJbCqNwAux9ioqPoi+YXHaO3bu06DXPAgAEFu/PyGb7GBo1bjHMnXeNLYSCW+r8b3k+Z+xxxJ4kxDykYGwy7w32wD5Ppiy++kDvvuF3uhrZ+9113QWu/C7/vhMb6ozG5kSY6SR3va18uyiZltOLHtG4KzZBlled5ZGXluPLm7wGl8uVOFKUmuNMBFiBzctDFOnK4AqYMWyLOjStXvqL2hzCfOLJ69jnnIEOdaspyRI9bhbNTvyIKKDNTKwBKJkmDgwI0IS6/4gqdKHlhzwt1D31WcMLK/OOBT5GgPJ9nJdb/lfQ8/bHIp7DfvMYtvT+FaXvrLbfIVTB3L0F8OW/sImiHWzZvMVUBYTAc1Yz4HZWKGoMh79KDfrHPiNprGPvIYuO08fAGzXuGaA16+EbZyFQcOLLJClujenWfeUVtkNdJJKpt4xq10/HjxykJDLx6oPS78kpNZ+b9GJjJxcGQrRtMf5IrZeBhMuwHJrzlKI+Gj/2QuIFfplScDGJAPHQciWZDbBpTA5b3Pn0u08nsTzz5pDrWFY52syvDijvrDC2CKDQGWnY8ZOV3anIR4RF6ehkJ1ZTTfzZOG8HxTAbjTiaLzWlLPBmKRLJo0UIzhWLHDjUr2LdFM48VsXWrVppRy5Yu1c5xHnPHU+TLg+DYJ0Stgh3zHP0cPnSYvtOhfQeYMlfp1tP/+9/jBRXaaEOWY4EwBcG6xlac1/BFr3ueRWm1ziwk5rsFvOBVbliOkmF6csTr00+GSG52jrRp21b69uun/WbPv/C8VK/BSmwe5vPqL7/AP2pdRsMycrgdRfP8bclsnG+Yw1FgxeoIJf12v2/e4Sc7vRkVNgZW+vCCfvJZ13dqG/pb75t36Sz5rd/WNWP2G+3PrQF6wxRbPRcBScB3fcFao0kCIgmwsr//wQdqzvIIxwYw/ftcfoXcdffd8r/H/6dnX1golE703isIkidl1S3o8UxBWSgCxIty8hPx4TuWv8XJ7Qs8UpANuR1aJs+H0K3IXWlES4F1g+X3jjvvlFtuuVXPHSEJWifOMSTKzDRWWfVqYeAW5DPb0fPdv0ODo8XurRKUBqeN4MhrljsZsDDwxCJOIF27drX88cd4ZIBNbvQ4tJjkxxHCSJikHAVduXKFjpiyw5QEyJPEWcDG/fqrdrjeP2iQDBs+TN56+y158KGH9ISpXr0uNAVPncvj4wF+siIZwvEAf3pd40/vist4zJs7VwvuOd266oDBm2+9pbPRb4E2x+U3PE6OMmmfFTU2kgq1OLxPUQuDYTIML3lKABIW07E+Kj8HRLgCgSat8c+ayCo6wMM05Q9T0QxhaRoUfMd1EK/1m+An86AswNFiJIQexWeF7UkalI/XOFLONN63f798+/U3eK+G/DD0R3n3vXeV2O4CKVwDzb158+auN4vCm4zoN9MprlycfjdL+Ao/w7B5Pgnn9nk2ficDEk+vXr21/vDENJ1H6coTgoREArM0u2XLlulASJu2bXSQjvKzX5IDM1wf6w3KyhFjLgOjhkditCyZfzJKTXDM0qKu8C8UO3yWHpzDxUOKt2/brmvxuEyFR8lZYIXiVAFO9+A0AI5W8vzSs846S++TEJiRXJtJgmjWvJlEREZqC8+ObWouixcvgbwuiU+kHsLfonClgd5yfVcU/uRtystPysp5W+wnDINpw36ug/EHC47vs6aIFMDlVeGVEYQVnisMvMOKyELPa8YL18seoMnJSkINlxXms88+dU1aRkVCJWGhZ+PAjmj6ZzQui8A8yct13fWpcvEfvxc84/oNaMXEVx2ZVrjlNigcH362bNlaKyLPut0NwiX4uCUDp6s8MvgRnf5Bfzi3kFN7OELN+Y48ro/zDBnPrKxs5P1ifc8zVTR8xNtcc4fP6+xj44gjyevb777TvjtNJ9d9phVl4+4pOtCCcGgd8B41Y564xYEmDaMAVhiFHdOnKxo/9iH+NXmyrFm9Sic4W3E1XSEgXrtD1m9YDwtmmS5z5Cg2wybBUVZq27+MHm1k8iBtyj17zmxJTkqSOnXqIF3NKPc/HaeE4Iya5nb5ZZJQ7MwP0cECVjgOCjRp3FhNV2YEHQcVWIiopice5UHFi6Rx0yZaKNjaMhNZKNkhze+TJ03SOXM0xdgishX+5puvCwp14YJ3onDFWdOCyWylB2F9N79pOnHuFzvz//xzkg4ucASTk1A5PeHee++RtPQ01hp9nkTA//gzH3HOc62YMDfoLL8ZboBUrFAZ8RWd4Z+Rzv4VM/paXPyYVuee2026nNNFNqxbr307nD9Gs5SrBXiO6qpVK7Vf1CSVSX+GSfPGgl7nn+ue/uN3j2dIkqx0XL7Fe/Pmzdc+IK5MMNJZZEy4/FHY9IhCDiDE7z8gj//vfzr9h/1MTLcE5D+XjU2ZOkUJjKPktABIFOzDZdcFCYnhkyjegzbHA6FNEGyUkZKugM0lEw/jrC4Lm86h43GQixcs1LNrubEDyyEtB86P47QUTu3A0xq2EjlAzW7gwKthXVwkO2EuH4/keJJbE8T3+htuUE3r1ptvlT8nTtRywjmH7Ftk/syFJXDtwGt05cy53btLHSoA8Jqy0oytBq137pw5OmGYDT21W84VnTNnrrz91tuQzyZXwWJgWTRl6Z+NUhNcScHVDHRa308SLBw8CZyZFRgcKK3btMI1100ChYTPsKXiTHL2fVxw/vnasapTFvAe7/fvP0AaNGqoGt7111+vkyJvRMHhqoMLLriApUGfZTiFwGta4I4PfZX/efuhoN+urwAL0/mQk/0m3PbmcsSRpMKO8H59++rKDe75rxqoS4szLTdLrv7zksqYLjabUxuAHj17qObw+muvyfXXXSdvwyQ3I6m+ZDNg3xLnd3Xo1EEWo6HgYEfLFs11Em1WZoY8+9z/qd/Uet1wVQj46/bbumY+CJXX9YyVJ127dpVKlSvptJ6BV18tjz/+uC7vOhaobXJRf8dOnWTpkiVy6aWXyZ133iH33H23Dhxwd5JrEd/+AwZog1arVi3tp8oEQfS98kp54IFBct9998q5CJvTKgaAcFR2l/8FzFoQl6Jg3+7LL78s4ZER8uVnn+uJ/7dDphtuuFFeePFFpPf1OlBDT6npMe8Y7xkzZsiO7TsQx0Q9b9fS/I4FpjW7LQY/MliJ/IFBg6Rfv746Cfz+e++V/v366yHjXKXTf8BV8szTT7uIilEIgIlaTgexaiIduOqHstI8vxPljI0B8+olxKVbt26I+vHl+SfgtBFcaVYyWGBFoPnZoWNHtGZNpXv38yVIT2Q3nf5WJyrPML2w14XSHCZo+w4d1AQ1MFpZgwYNdMkNR0yTEpNgHq7VVvGJJ5+QwTBpmjZtJjVr1tIKZKEaWn8ewsypJRZoQrKjmiq9N/gu56/RhKbcDNe00gF6rwnCqF27jsu0yNfJu1w8festt2pcuNyJS6wGgXzfevttadSksdSuU1tJxWrtOXWBceHoGv200sFyJntt2gf58OCHpXmLFrpullorr5tnCoMVjf5zFI2d2j+P/FmG/zRMbr7lZrnu+uvkm2+/kZGjRklDNBDaaFB+iMN3+J1aEud/UQs0UppwypUrr1N9SAhBmh9u+Vjhy8XF6QRnzrmjNsK1kpyO4htGbr7HlRFcl/nKq69JhfLlVNPkNAcu1Xr99Td03ptOIXER1yNoOF5+7VU9EJlrUDnazjNSh//0k3REWeGyu4oVK6qmTxOT/VaNIDefJ8+Z/kZ35ae/XAkzbdo0ObvrOapRbd+2FdphBrTC9+RhkBG7QmpUr+HqHjCDI3379oP52E5at26jk6gZF3cZKR5M4/vvf0Bmzp6l73EFwtIly2TJ0qWqwXY5u4t88dVXIN2XdMqHJS8dw2D9+R2aJSc5k3A54HYA5axdu7YyatQYaG/XIIzTP7hwqvAPOnSGHpgCwEpIDYaZzT4Uq/UzGWme4VQH9j2woLKymdKpj+lzHGGjaUgtgSYKzVjLTKLZQj84cqUVGOAcJJoAnOTJ/juCWpCaxXiH5OoJypSbaw4rptpv+cNVBpxkSwLhPXrFpGK4Gg98choAO4NJXJzRz+dY2Vgx6I95D8/jGkdPdU4d3i1CWBpn9puZSZuMF4mco84ciLHSjfB8l9e5b1kWTLigYE5aNWnMNAkKDNE5VLNmzoSmcpt0O/dc4dmgJFjmicqkaWf68kzs3GlF2U2emcxgXjBjKB/DoMicB8j04ERcnS8H8LfllyE4t+z8bkd6clUHV60wv5mfOi8N72l6WU8iIP5OBYGmpqXqiDvnMLKcMH2YxkxPPsORSmpcJFxqwNSgjBxFwbThczSN+UQsiDEUWjDNU17Xt/Auyw7nLDI/OY2D7+k0Eg8UF4ZnnJl+1OJIajTJOUUqMiJSB14Yf21gmKhAUf/MZhWcNM601vIAFxKCso10KD78U48z7lStIi/DO0Nw7jsku5ObHuIJM0JGcU1rFKCVhtesFsfcc2cqM8tUGgoA57qn7+MeNRA+z0LPysDvfIefZp0hZ/tTbvOcalv4NNcM6ZG8SJbW1BJPBAZa5w6408IUbrOigiLRbwuUlRWKmauyo4JZ8rEC6ugpPtm/w9dUayPR4T1WHM9w3DAFlpWX4ZlJu6YjX+NkhMCnIThL3j17dqkJwxUJ438bL5UrVdL4831qV2+/9ZZ2Vj/62P90eouSCPwiQSjZucIg2N/HYFipOKKnP1zlwSI4T5g44ZrKZxGvlV6EN8HhWXrpIk0LTEuWDS0nrjyzrvE3845h5ebkan5TO+baUovM+Welq4mTZ5g+gCBI4kEMk7LjEvNLCVLTxzzEMmDizSiaMkfCs2DlSVFY8TOflFnNXsTbCo/haKOLeFnp4fbPnT543KQF4qeNLfySfJYvU8eKl+HU4owjOO8sp3fsQC0Kq6CWBUwBtODenaFsUEQTKgZWIS0Olj9G1lIl80nDLUPJZDUwJurDDz8kkyb+KXXq1pZzz+su9erV062N/poyRXbv2C1xMAn/nDSpYBI1fHE5wgrP85obvtL4eDKWLUiYReUyMA2ad9U4XqW3ds1h2249afnB3xbJgkXMpwdOLO7e5amof77hfi//OAqHn+Bc8M4WeucnOIN/MsHxee5W8u03X8msWbNk69ZtaqKz4FWvUU16XNBTBg16QKflUAMxMNXYwArP85obfoIrjNIRnPH9+HC/5ye4EsI7W+idL4JzW6xQgf+mxCspSkpwZQ2TFaXKjiI4ubgYOSgPTSeaMjTzuC6WgwUkNFYAq2/RXRn4aX0/FsGRXKxGqWQVu+zT5lgEx/BOnGzdBAe/SSBe244X1AEfBHd64E5Dn7UeJqrri4ewpxdlTXCnLaWZ35Y706DZXobyuYuG+cbeEdND8s8CCYAFzexswo03q0p4eJhOQubyILfm5o3jVQ5NcZcrCU7k2ZKBOVI8PO+VfdhlhzNVrpOH1kF+mp+lRpkT3D+vGhdOVLo8/M7TFowdv3THas2tZwysuX5OvB9gfMNvp6aLNVXm9ILmPAdL8OkVF2pFrOgBeg93cMsJUsvjdY8mntM63CPFjIkFfKcWxPhCm2OcnQHQ9tQ3aHau9cduzcATfKaYxHBpa6q1oUVXRcsz2BNGntgCmAaMF7xybWGOEAq0LuZLIJzJHz4H2TVQXtCLBchHXNUjLwQ63aO1bjC93c0by4K5ZsH7d1EwfwIKyhnk1rCN4w64Jl895eF3y1+343taPvGL4HfLEQEsp1omDNxngZxeeMaktCg1wdEDT8fE8c57KwHPNHhmrgVSUTpikgvtBMYZrAxkstfomUVUWvBsHJ3k3vyo4HAsRFqI6Wjm2PJcz9NsMRU+QCu8lVplDcrqcghbyQ3BZEGWHBQdh9NREOcCEw3mYjYecuB3Np7LwnN2TmdxkRxHFmnqmlFnVBTGC8/rNXhhR0Wwg/wy8DsLjlUuQAMhxaPS53OE2tMk9SoghUBCy5dcpHk2/HKANDQ0S9YTBMsiK65THOIIQJw4SqjhM3fx54pjAD6ZT4bwITXCC2ReQQaOtKqpj2f4lh3+2eGxAyKZtw1xBuUxrvjlyn80Fep4nw2HMwhpw10MEDdNR8YMeSQoP/xu/DIgzeSxiKgfKGPCqSaQlw2Iy3+Gk4ffDNSKldXI5NO5njElk+8ZgtOyifgwS5zK6vgOxy4HRNiM+DKPXUluveddV04lNC5ezjN9SgpNwtMBK4FYIU4cpzZlmXCWs6OyrzmQIWv3paLSh+NaEDLbs2VmZptCpgmOe4F5wWi9WbDy8OlExUCBQmXQvsZ8M6mVhYSFkY7fTz7LjgeLPE2bbw+ySZojUFYfypENR3PEERgG2Rgbhp8nOYjvrqx8WbQ3UTIRS0dIiKxLSJe5e5MkU9fSGzmtT2+wrpC8d6Xny9TtSbIhEZVRp4KYim0In2kGoipIRCv+dN5AWiHtku0BsnRfpmxKypNcm1lmdzJgVPOQB/aAcrLyYBbSIEVyg0JQmeFAngFOkB7yODsIBB1sk5wATlB2yQe5SXr5IDqSfw402WQQQ3yuQw5CzScB56EhcLAxhIaYG8QF8EYDohVAUnPgfi7CSrWFyr5spyTmBEtOYLg2oLnw3A6CMUToXcpZvgyh2fFsFt6hyyVJ64NM3wCUN/zI5758kBvh5UJ+hueQUDwRps5uM04bG9whmZPGbXjXNEQsmyLpgYhfYKjsh5xH7YivLQJ+heqzVn658/DUQKODz6Il7eRQ6kEGb9A7X4fOsKAY8MaJpJLpyHY4ODmWOziw7wftlVY4CyfH01ZmWQlK2Y9ki9z2xQSpFhsmr93RV6rmp0toHjQhzh/zCIevsnA42bKjltOgSUElDA4IlCBofcHBKAx59JX7xInkOO0oqGjlUUCDOE8Jt7wHAExW0JUNnPA+G/7FZwXIMyMmSYc61eXRHm2F+/1SZge0gpSAGPl84gJZtzdB3ryzLwgxQJ79ZpQcTcmRoXf1kSoRQToHryhM4rGqZCBub05fJxPW7pX6scHy9e29JY5posQQiFCC9LkQPBek5O4Z96J+U4ObdzBVXhk/R5rXqC7PXn6WxDlzNI1PBk7IkRAQLXd/OUoGdmgkA89qJkH2DOQpNFfU7IPBcTJ+4WrImysXNa8j9aICICdNVmrcSEOQX2JglExYFy+/z18G0rBLtt0udSpWlv6d20iXOuUk1pkuQSj0JBkbygHLbCZIZ2OmTUYvWiWrd+5HGbBJCPyqWzlWBpzTRjpWiZTyeRniyM2R4CBua1Q4LdgQOvLtkhUaLaMWb5F96Wg883Ll8lZ1pG1FNLzgOBIsuwBIzEv2HpBZ249CumANh3PkPBHpzJB+Z7WU+mHwB2mpOiZIPh/EloD8+WP9Xpm8eAPiBnK150r1ijFy4VlNpWedSlIFlkrhOneqwA0zfA8yMPdPtAT4KrlnGFA1UPEnT56ka/42bdqso3qnAqx6DvyXiExPRaGxoxKq6s9U9WRsgM8abYzFPUB2pmTJJzOWy8hF6yXNhhaUhQSVXLU9/O3NcMjXc9bLmNW7oSm5t7U5uWwrGciXDmg/29Oy5WCWTSpXrQqqobnDEI3mkIxGY8mOeKlQrTYqKGwWEHCGLVJSA9D6g5wMLBk9nRvcGLNGbKxUDQmWGjFRSvLUfNnyH8pyyldzVsv4NTslC5WwMAr744YNpm6gHIEfiajANM6Y3nSFYa7yzxesd7Ihz9ytO2RflkNaNm3Cje4Qt2BJCoqQCbuTZPD3E+THxVtl/PJtkBcmPPsalYhpqgfK3iyRV0dNlW+nLpaM/CCpGBMnlWPLy+p9ifL+hNny88L1kgItitVJJcX7KdDY/tyRKM+PnCzzNuyQsJAwqVe5soSHhsuCbfvljTHT5M+1u+AfLIBgaleeVdGkSwBkyIIGNW9Xonw3d7OMWb5d/li6WQ6m23USuEtEcAJN5gCZs2kvntkqU9dul0kr1svUVRsKuVmrN0g6Gl0niRh/7GOkZr0XZeOt8fPkuymLJB3EXS4qTCd2bz+SKu+Nmy6fTl8p++xhhRr4fwrOaInZ70Jy4xSF5cuWyuiRP8vRowk6M9xoO254/y6M4ipSUZgyY/60jw2FIU8rK/0oKFEgLzSfgWjVYJrkgcSOwEwdjRZ+/t5kEFiIBKICoSQpybHf64g9UMavPyjTtyfClAF5KEcz+ekvtFQQqtFyTTy08ALUCGjquH7iO69BGpC8ca4bPqASo7It3432OSdHmtasKiG6OJ4vsV8pRPYcThHoHtKiZqzEBKJl56x/yA2xNSyC3M7vjCc/WdDZ+hOsJLbcPGhFbeTLB66Xp/tfIpHUzvCgElyuTX7beEjm7EuXTJeZhISDs+LuDcpm0t30W7qfURIAITBsd34zjd2JwK90+QyfkQDSkBfzt+yWCtGxUjM2EvwTLIfywmTYgk3yzh+LZHdSpgRHxAj0KM1rXZYF/xlyFrSwnxdskAU7kqRT04by9u1XyGsDL5R3rr9UXry1H8zUfBm7fKOsOJAEkw5v0OxE0difGyCfz1kBUy9XHrrqEvnw9svl9au6yfs39ZYbzu0gKbmBMmz2StmVnY9w2YVBZ8XVpJ0dcdgNcv3yz7kgwjCpVrm6BPCsC4SpcVQ9DFYBHI2FhMxsCYkMk6fu7C+v3nONvHL3depehXv97mvl+TuvQQMUysRRPwKQ12kodx//Ph2aX4K0qV9b3rztCnn3+p7y+sAL5JlrL5bIqFj5fd1+mbBhH9LGnRf/FLCUlQosQt7Oo0wq3ObpiYGF2JCc+c4/zrDXDmc4frJvhuaObgQJrYhLhejcR7WZd81SGbSwvhze010t6C/M37xAG0w1aA5o3ZxBoagggZIeHIpWOVAy4U8e1yQGobKjAFJDykAhYd8H+3oyYfJkIVmz0IKzH8QOO9EOQstEOFnOXMkLhh/QSjJt4ZKLZ/IDTQWlqcSO/TzEww6/MgNDYD6GSxrMkzS8n6UVmynA/2HiUhPTwQ3Ej/FGTnrHix3JjMPidVulWbUK0gCVO98B+SGvE1qqIy9SdhzMQKudI+1rhcMsSyd/wEOa0Ej7kBDJgWmeCiJMCQqHNhUsWSGhkBt+Q04SHfM6AIQRFZgn5Ww5Ui6E5o/ptM6CmZQZHIwKbJNcJ+McgnghTRC3fKYt3mWnveW04535zEwDyQYiUkYPpDkFcxLaU2ZwNGRiurFvlESMEodnc1Eu8hBmDjTQLHrMvipNqXw5nJEnm/YmSbs6tSQgJ0+SEI8hk+bIz/PWS+Pa1eTdWy+TjtXLm7LERoldEvyES0X+zd56QCrFRsmdXZtJa1uG1MhLl5qONOlR3imXdWyKBiIQBHjY9N8hbZxo4Fat2ylHkxKkT6ta0qNupNSQFKmYnyy1ApLkzo71pUW1ynIwB2blgXRxQFumyCwHpFUldWiE6bY4+WXBRjkI7f+mHq2lYfk4lHGWEcQdZYVhaf6jseXg0MGkJCkf4ZR2kbnSJTxVukRk4DNHzg7LknPCkqVDZI6axJrFHHxCxVy045DM250iretWl2cuP1daBmdLTcSodn6qdK8cIQ/36SFhME+XrF6tW0Exa04HkALI98KO104UJoXOQLCQc1NA7vTB49i4Qyl3mB07Zoz+/vDDD3UvKzO6ZhY6c2eEDz74QG677TY9wo+HNf/yy2jd6NBa3M1njwW2jOx7EVSmRFSw6Xtz5NWZW+W2oZPlsQmLZfTmo7IPBTMXLXQumuoDaGGHzVsno5dvQsULkc1ZdhmyaJN8snCDrDyaLgdynTJ8xWb5ZfU2SUBl2ZycKl8sWCtfLF0nyxMSECLMEBS2zxevlaFrdmt/0OpMm3yyfLfcPXqW3DdmgXy94gBacpBEfqhqFoEgINOBHSxHQaoHUGnt3JvNqwTk4Zn45Aw5mJAsZ7doJJEkEmgXjCP7bRJRq9bt3QeT0iG1KlXANdxHJWcXgB3P5AaGybpUm3w0Z6s8NGqxPAz3DeTanJot2Yh7EGQxI8I2WXMkWb6dt0Jm7tgPQguUo7n58gvMqdGLN0oyvm8/mihfz14m38xdLWvik0EkwVqpCTaARRtB3PTU3vB99YFEGTJ/tSyKT9HBEfYxWZpeMCzE7dAWv12yRX5ds0d4KisHB6hh7k9Mkoy8bOlQLQqadTYao0BJTDwifTs1kdf6nidtysdCd+MIM583jTRB7ZnGduWQQOlWs7LUDOfvTAibJc6AXHzPkroVKkA7zpcDh5NRmZAeJB3kZ4wzVa7rUFuuaFNHInKhIyPhg1GegtHARIJhqlfkFkoBkoF3Q7TB4oE3roDx2wFteuGhDJm/4YA0rVJVrmhdD36jgSRtK/m6HsVLbCTT4X96nk0iw0JgDudLKO6HOJA2NPDxnhklNunBak8TNwNEuWp/vEhYoFzaro6UC0ac0Ajbcc8B2UKg4Z1XKUhG3ddXXrq6p4ShcS5+7uOZidMmrTVFQgtuCUDiIndt2rRRhg8f5joiMF/++muyDB86VM9T4MJtc3qTyIwZ0+WGG26QL7/4TJYvXyaHDh2S6VOnyosvvih33XmHa1daTpuAL6opGOcNSsfelBQ8O271Tnn1l79k9ZadknA0VVZuOyyfTlkmb0+cB20mVFvS9Oxcmb1slSzbsAWEnC9pWTmyZNV6mbd0jSQkpMCnIFmxerOsWr8FFQKkgmtzFq2UefMXS+Lho0rMedAaJ6zYIqNX75IpaNGf/eF3mbZouZ76tH3nfvl51kp5+ufpsjTJIZkBUaiBMDMkHGZviDw3eoY8PGK6TNkOEvfKzhyQ9LLNeyQsNEKaoYKGcqIIpwWgxefoXALub9m9X3p2bo9WmpUXQPpQngxoI+xUf334VFm8ZpOkHj0ku+MPybfTlslL4xbJigSHZCO+SCZogvmyMzVHxi7bICv2J0JrhMYFElm4eh3e3YDwgiQhJUUWrF4js5atkCNJachJmpAqZonAzRDS7E4Zu3iNjF+2GZWZGiDpx8TZgcblz/XbZeSiNZLMmCAOzN00xvHAEYQWKK1rlpcIaJlxjix54opecs+5LaCtZEo4GtIAkEYQp3BQKBWM5dUGrdQhb13bU+7v2UqiOc5Ms1fvc0ApFPHKFAfKUdXyUSB89vpDfwvIkx7tG8s9PTpJo5hw3ZfQjnR14j7LayJaj3g0blEgtU51K0owrkOfRjqhTMLrLCTqzmyHfDR+igSjNXoImlUcSDPfidYUv7kKxOyyQjkgCd7LhCmMoiRxQTGSkRUshwNiZE1OuKzKDJN4hhQQoZq7DenELpNAWCTUyFftPCAwM6R55Vh85MtBmOpLHWGywh4he1HGA0NDpWp4oFQMBhG7Ov7dVoIJvyzBxpe+lpXPZzQd0+zkYbyLFi6SG268UTeuHPLpp7Jw8UJ1NDtpjnKTyKeffloJ4eHBj+g20TwfcjLIkHuhcd8vbmrJ7WVKMt2AuzEkZ+bqvl73XNlTPrzvKvly8E3y1MBLYQIEydzdh2QaiINaRLW4CHnr0bvk8VuukhBUhiYVysk7D10l7z50s3Rr2VjKhwbKM7dfLYOv6yPRaAHbNKwrHzx2i7w3+G45p2lDmIWBqFgwUUCW+zKcMvSPmdK5VWN5/ua+8tG9V8n7d/aVC1vUk32ZTvls0jyJz0ZFCWJ7b5cDSSnQnNJla7pTFqw1p24VKAFANgr02t2HpXxUuFSCC0TBpjljh3aQi/qxdu8haHlB0rlBPUGjX6BFsZJxGsPkpcvlnNYN5K07+ss7t14ub9/VT85rXld2p+XKsPlrJCU0Rs1TFsY82LY5NLOhlrGQRkHGZ+66QZ6+6yqJDA2QNg3qy1uDb5MPHr9XOjdvwDfc4bmcBc/vCgYA2etUqySVYqJl/f4kybKFaQOTB09Ilol5ITJ3/Q4JCQuWLpAxAHnIeWrpoZGyZs8BiY0Jkxrlw5TEw512qR8XKhXysxBvmvq58IOaK3UwvMTwWHnxLwTpVT3ELhUCs6EVkQhpNMNERNhHcgJk+dbdEg4N77xm9UBUeBvlywY/wxG/GBBnKNIkJzhGDgVFS3xItKxOs8kvy7fL3gPx0rVBJakXCu0KcWNgTA82wDkgn9+hzafi/QHd20mDcJBpPp5TTY9dMlYK4ZOEh7S3Q0u2g6gCkSeTNh2Qp4ZOlMe/GilPf/OrPPL5ePlu6S7ZgwYxx2G2rSdBpaARS8jJFu2WDQ6XsSt2ysOfjpHHvx4pD372g9z32Sj5eNYa2ZSeiwbEdBW5oYlkvpYxytLX00ZwrDTa8JUQzGi2ENxZNjomRvckQ5uhy4T0nFGQH7fpZnfssGHDoBkdlQdAYjwEmQvAeQAyd8F49bVXpGmzJrJs6RKZN2+e+nss8G4uC0GuXW44u730qx0mzSVD6uWkS59a4XI7WuVsRGT57kRUrhCJQSWpA5Olmj0dmp8D2kG21EZBa2BLlzgYSlE2u1Syp0g1aA7BaIEjoEVVgwZRW1KlQhDMB1YqdnxBLjvMvipRoXJ395bSPiJLGjhSpENkpgzq2Uza1qkMMy9bNsXHS2ZehtiC86RWlTjp1b6pdKgUKf27d0FaGPI2xGGTZJiu2xNTpX6VGIkOMVmto75oiLNBYMugmUZGREujclEwR1zvIs1Ve4YnbRvXlNu7NpFWgWnSIjhbWoemyuALW0vdcmEwbQ7LkoOpkovKSbOFNBcKFwJHRYjaSTVHmlTLs0sEtMUoVHqeu18T5lpULjS4AMZdgyxaNvCd5qvplzJ5EgDNs2pEoHSoXkGS0nJk454EpC7KAGTlVJRtiXY5nGqX5rhfLywXxIR3gkJkV0au7EpMkHPaNYImlaWd8TpBlxq8SxlzBMH0g4zstLfCowwkOe1T4zWkh01NWM6pC5YkW4j8BG1x856Dcla9GtKmQjg0OLwDLQivqT8knjy8M3/9Hnn8i9Fyx5BR8uhPk2TUsh3S8/zucjs0s0oc2MFrHBQhOXIi8n6YsaMXrpHaMcFybsNKEgNTmENdKhicWWXC/FJJQVCQCQSXA55cs2Ov/DhlATT9IGnXtoXUr11bDiC9hsxZLUOmLZU0aJ20MtljwwYwA2U9tlIF+XXhahk1e62EhleQnmedJe1aNtV+5+HLd8grY/+SvdAOORDCVSAc5LHcmY5SExw98HbGFHU7nStWYjDjrFYKmQrHrmJznWUO/uErTRY6Lgbftm2bREVH6Q6nPL3d/S5a67Awuefee/U8SWp21PjcKrZvuULDQ6RiaL40hNqufTN5OXgfrShsgGoRERITEqaTLewImy1qfl4u/oepCcIN4waRCD8QFVscOdpfFoISH8QCDJGCkDahqJA6YQKyoDyjsnH6ZYgEBeTIDZd2lYoQPwLFnkWImlUFyN6lXkXJc+TK+u0HELMosdkDJA6ayBPdmsiQa8+XttF4kGYM7uah9LISH8zIkPjMTOlQH+ZpPsxTjS77ZYIkESrcroRUqVYpVioiXHbJk9hYhWnFhsP1alxfohC2TlKGhOFBoVIl2CadWzSEFhggs9Zthjlq8oVEQ62Pk16Z/CwDwfgLgCmZl8thBrs47VnQVuww7RAWiFHni+FZyx0LSCqY0flyYYcWEgiNaeyiZdBAwpB2QZKL9Fx/KFXsOYKGoA4aHYQH/50glxXb9kie3SHnNKgj4cER0H51aATaLMmMQzWQJQ/xhiz5+WZ0nhONLXGYv2y4aJo60CA5AvMkGxr3xM37ZcyiLdK4anm5pVtLqRiCZ+EHBzqoHTtImAHQuqDBcyQ7ILKCSGw1yYFmm5eTAetgm2yAH9nOKKQvUh+ysk/xcK5T3v99qp6G/8DF50jdMJQVkBLEZtaxNEI+lDdqni6iY4PM8yVCoE2Xg//P9+suX15/vrx0QQN5e0AHGXLnRdIwNlDmbNklo1duVy073wFCTIcu6oyUvbACFu3eLw9eerZ8cO258mSXhvJGz47y6c29pX3NirI5IU++n7kOBnqgnl+iaYSQzY4kZzbJnQjzlApsBbUlLOP0IMHxxCnufkvNrjBQmMEg3G6cEwePHj2iBcMiy+KRL2GoROEonBSXxUhbZHzq6CIfwVXrmv5GBafmwh8F1/AMNUzzHdfgUcF3/d/cI6nw/XIg5wZxMCVBmNTqApwgCFBPEEihYSWag/kSn5KFCh2uBMIBhzBnjoTj+WCaTyopYoeKkgVyWbdnP37YpWPduiBVaAcaYiCsPZvsTM6EJpQM7a6cxEJwEowhJlMogqHe1I+KlGASNSot6B3yhILMbdKyUT1oQvmyLyEFjQwbCr5oND/9RJqb/hl88n8VS/9zgd/pfOeDkdNAv8OTAFZoEEODynHSpEZF2YGw45O4qI5zwEJk/lqYiigLnerDVASpEg7Eee2O3TBPY6V6cLA4sqDBwa9cpKPdxaj8n31tOiUFv6jHcXCB8eBIMAcC8hF3p7BRC5Q0kNUSNAxfTFgolSOD5P7eZ0nTCIcE5aUimZifKAcwYwORdzaQaCDIp3eTmjLkpovkhxt6yNj7+8tL15wrR5IOygdTF8jUwxnQRBHLwCDJDAyXuZsPyfrdGdKjSV1pU6MCGsRcyUa88qh5oSywP9MBIuOEbDMNhiPQDqkVbZO7zqonL/bpLD3rVJXyaFAi8rJhJqdL0/Khck/fHhISFCzTlm+GZu/KT/zprAN7rloCXZtUQWOaC40RlgjM9rrhNnnwym4SHRYk244kyVHOYAgN0rKC9h6OqWfl1JmJ00ZwVuUxhf3kYUwLemIqEKNgTRExi8H5jDsQtsYkNy4YJxnqKJBWvuLBtZd8Tss5/zyeV/MNn2YNIwcs2NqzoJ0cPNMkFGEGw6tgDZvkigKNipdPMxAVnEU5C2YsxPMBSKUqGioYKgsnmk6FmdMW5FYlHBoA3iZROEGcDmg96+KTxZGbIW3qVcUbJH13mlEeFuKYcC7rsgKD3/CfcuWzawDpkM3TuSArU6Dgj97QqUZE57rmkUSe6ekL1l3Ka4GVMRL5GIWKd3bDKpKCirn5cKLYQ8J1kvWWfQfl/NaNpXoYnkT8qKcl5Dgl/miS1K9cSSqjRoaCFBi2E5FzMGldflswOct4Is1x02hzeB4tM1c2ZINI5+5JljdGTpaKsVHyeN/u0qZisETgptNGEsxTjZ2DDcwvTQrkXUhuslSwJ0pVe5JUhYneuVKkDLzwXJ3O8vmvk5GnKLdIr725ATJq/loJCo2R885uK0eQ9PuCwmVvSITsgv+Z0ECzQJ6puHYwIFoyoFFzWlEo0qV+uTi5skNzaVsrXEKdaUo+XGnDkdBo5G9jNmSwclIRRmIW8o9Te6B1RoQjXcOCpUnFWIkM4ASnXHHAUnDC+giF5VIDlkzl2EhJyM6R+PQMlB2TKWoyu7T3Mxmnj+BcrjRggeMAgKkgxpGIIqOiCo5P08rkBZ4/mQ0Vns/xAQ6RFw8WanNf/YKp4RYcLbTru5oxuE+tVHHCzF3gKWDeTcu1SxrDBkEpI9hojoB8AoIlJRsVBmWqYgy0qgBDOt4hmvlTuAqNbMfhdEnODpD2devABIPtBvlURDxjDwiRpVv2Su0K5aRRlThcJMEV9o/xSszKkVwEpY2CFmj2t+VLcmo60jBPykWHi0PJjvRjyMPqw+N0CS5YZ3ppftEWB8z/Bt7yW+AzdNZ96kXUODgKGAaNpmOtcjoKvGrvQTkATWnmhi3QzHLl/PaNQIBIM4TnQHi7Up2SnZ4trWpVkUjcZ5paUyUCkM6eslhQksP7TEZmhSYnyCAHl1ceTJGv/pgj2fZ8ue+yrtKxRqSEwwzlSG4+VzLo6HSe5OD5XZl5sj1bNK2pdVHzRWaCAJ0SB9na1qoqMWiQ06Egp+agLKHhWLM/XvajbGaA7N4fNlke/3KMPPL1r/LoN7/K09/8Los27dHR4y/Hz5Invxojszbu1vmT+dAUE7OdsifDISk5ICdktDWFhpo+15yGIA+ZJ7qULAANQG62VAxzSq3KsToKzGfZNcH4slOImiv/aMoGhQTr5gccCGNZZDpy5NbhKodnMk4bwZUFkG1GC4NZZJVOam01ataQpORknRriPUpKMuOhyqyQjRs11srKvfePDWQwQJPFAslB+zzgzHWSHYRAAWKIXFbD3yQGbrXEAkAfqAnpu6w0SG5WUpqfWr34nR98AEiERrRwy35J03IDPwIcamZlQf9awuF8mEj1KkVLmI37giAt8G4mWvZ0FDpOvuU1mi3sD9u0Jx7pFC4tqlRRk5EBBWqBt0my3Snb9sbriG6YM4u9Yyq3NXGUAtO/2Vt3ij00SqeCBIBdnQF2yQDjLVi+XitDszrVSXuoTKZRMGcDIN7IA2ouJGduucOUQNQA5hsCIiAn456DcDglhfFgyip4Q79rwjEVEQ5MTJAAl5o1rhAhDatWkBVbdspu5MdKaKNV44KlFkyxgEAHSMWpI9xr9qVIMLi7Vc3K8Mt0jgc4kf8ghaIFn2mHD6SVkrW5qLJnosxsysiTIRPnSg7yjqPp3WtEQRakHB5gupp8pukLDQna8+uj/pKnR/4lh3LDcC0KZjQ0PCV5vBASInZkHpfz8QBmu9MuWbkcGMmTSmF5UiGcPbo2EF2YZOaFSDZInGtGAxA2D0LipBJOKM+G2WqD9sbugqnrt8rjP0+QqVvidXUCywFLnE6QtoXJnrR8SUjOACHnS0woCc8Bkz5dGlUrp2VzV1KmQGcDaXFkmu9DR0PeJEDVPZySgTInEh0cAqKG/PjOeXpmYMaU3TMVpSY4FgBvZ/UNWI6tZclBkQo7LlrnwbdM2507dosdlczMYUO7Hhwol1x8kdhzsuWdd96WPXt2K4lxKJydoPMXLJSvv/pGIiKj5Ior+uIe/OFQWnFQNqKpYVo1khILL2mMegQ/g1BxdUkTW2YUOpRcCUaBYLj7M9PlKApAFlpx7vzAeXDBrJgo4BIYJrvik2BeBYO0QlBZzLQKB/yz53N9ZLj8MW+dbEx2gLQixRkSJ9lBMbImIVPm7k6UmMgIaVu/OkwJEAdazywI9uv6/TJ0+VbZlgnSQ7jwUtfRbj1wiPM3pX5siATDf0aL/YeoF7Jm736QfK60qF1R/SKJGNpmepME8yUHlXHi+n2yO9Mm6c5QyUFFywkIl+UHsmXt9qNSMThMujWuo0THeAdCa0Q08R1EqumP9MDvoGD8RoMSnwYiDebqDU7vIBlryZDlh1Ll+yWbZdKWA0rkJnxqCUhbxI9TMgKgHZlVG9kgqDyJhbxXdWoD9Uhk4qoU2Z6YJ13r15WKeIJtHwc77PlhsmDlBqlXtaLUgDnJlRssMtrfhufMLhoEfinZIiwmHu4HOyC/3gfRQIbNMM1ehdZ0CH5e1aurdKkaLTZocbb8SORdqI7mZiPyOYEcxAhCXudLwwaNZFtKrnw3e5kkgYhyQ9CohcCsR7pwcvaYheskEdpYywY1pXK0TcKRRr3r1pARt/eX0bdfImPuvlRG3nuB/HxvL/n5rl4y9N6LkN6VJMqZKY9e1Fl+vu9yubRpJQkHLQUjIapUqigJdpuMXbdTDqL8ZgSjYQwJkrTAUNmXGyQ/Tluq8xM7NjD9bFQSIkCVXRpUlSBHmoxbukE2JWehsYmEj8zrQElAPflx1mI5mpYhHaAF1w0FN4PU2HhzF5MglHuWmjMZgS9yJmwp4Ct6PJquKKwCdeKgabp9xw499Xz+vDly9GiirFm9Sjp16qTTR3iO6boN62XRooUyccJEPXVq586d8uMPP8qHH36sZu3Lr7wiZ511lvrHHUngpRKCwvXJuKRDJf9l8SYpFxoql3RoKdEkM9qGKLSBILMDWfny1/rtUr1ctHRvUk2nQ7BS26LLy69LN8kBWEKbDiXKAZhG4SFRUjEyHNUkXxJRUeet3yF7UjJl8ZYdkuTIk5DwACkfHYSKESAjFm9UwqweGyfj5qyQ3bCJtmVxsu1e+WbyfMlASz+gTR25sFkttKbsVrbJThDfa+MXyMLdyZKTkirnN66ly8ziUfFGz10u9WpXkz5Nq5tdPBBhVuwMyPHzkvWSBdWjb8cWUhUVWDUQSokKkIpWfAo0tGSYTVzGNHTiTNnrCJZt2cHy08JtMnrpGs7llz4d6sllTStKUBYiDI/XJmXJgo3bpEH1StK1dpwE5lEzdEgaSH7xtgOy8WiWLN6+Xw7lOCQiIlqqBnP0MFjen7RYxq3ZJ1t37peuqGzlItj5nS+7MnJggu1EesRIr8bVJDI/U69Tn7PlOaRcXLTMWrddFuw8qrtxPNC7vVQLypZgaBbIQtmT6pAf5yyXPp2bSrsq4YiVaZxU01Z/CHyistJAnwmCjU9Ol0ua15O6UdAElQ1FjuLNZ8bNlbWHkZ9xlWXf4VSZD9Nw6qZ4mbL5sPy5/oBMwvc5m3ZK20Z1JDaIqwicUq1GTVm0eausik+HjPslO6aSpISWk/kHUuTjifNkGcKrGuKUV265WKoH2SUA5BQMwuB0nTCQeBjKXUg+woQmHE5VHaQzc9tB2Z+QKD0a15U20Wy4TKOrpjvK39ot22XT4Qz5bdEqcUZXlcyIyrIiOVfeHz9HtiQkSeO4AHms37kSh6aEujCJvQLIn1bQrK17Zd6GvXLUGSFZkRVkKczxD1HuVu1KBLEFyqNXnic1Q01fMBsJSuSqNgBrjvtXacC80eMi0UiVBU4bwVGD0CRw/1diBEEtr1Wrph7jt3XbNlm3bq2sX79ebr/jdp0qQhX73G7nQsPL0+F3TvLllJBt27frwciPPPKIXHLJJRIWxjlASELKQq3FEoOf/I0bsBpk6tK1Uik0WHp3bK3ztwJAKFqxUCgSshyyYO0GaQCC69q4NgoiChkJAi1eXHSsHDpwUA4eSZB9+/ZJ02oVpFZcqIQi8pEhwVIZ5JWUcFQOJqXIvj07teO3aZU4mF5BMmrRJrTiwfLIdT0lOMMhKzZtkSUbt8ruhASJARHe0KWJDDynlcqjqizMh9x8ksceaCa50rN1I2lZKUrygkJkZXKeTF60VPqd10laxrAo05BEJBHHo6goI5dvlrjgfLm0dUOJZfw0PaAVw88cyLJw5RrJy0yV566/RNKhGS5ev0VW7dyLyp0gNaERDujSQAZ0qiflnJwkCtMLDcCB1CzZtGmbtKldVTpCMzSNAhuTQIkKD5UjqJiHjyRJ/O4d0qxKeWlePgbE6JAdyZmyM/6w1ABh9enYXMK0XOfLobRMWb5+s9RFBTyveW0Jzc+Fd9QYuBie2rsdWmuQrDqQKk0rR8n1nRuBXNAYIUw7NKap6/fK+oNJMrBbC6kbzhFmeoybNBM17+l4jc1PAMzd3ZKalCQ9mtSW6jFh5mk8k4ZnRs9bye5HcaSnSVZaCky2BElAg3I0LV3ikxCvlBRJTUxEurSTcJjIHLnm1KBGderALDwq2w4fQVy2y7zl62TNlm2SkZMrXWpXlrt7dJKmsWEgNrtLHmaE29nYxwVx2YI4AkJkyVY0jEcPSo+WjaQeZNSNMmktQXsMQbw6Nm0I0suRg6mpsmLbfpkJDXbJhi16/mrXGuXlnp7tpH5kvs4RDIRWTHrkKG19aLkVYsvJpn2HZM3WPSjfG5EeWxHXDOnesL7c0/ssaVQO5KtpZdKOacN0tJyhvNIDvpcpwcEaYXU/ebCoeYLeHevQGSYOo3EiYGJyONsBgqM7cOCAlCsfJ+XKQVNwERzBfrYUFLbNW7boqgaeet4ApgIPweXIookqW20jg2WlWETHjtkstIbxgTEShvsV0LZHohJzPZ8+D0JJDgiTI9DkwlEwKtly0cq67kFT4UaGR/A+TYW83FypEZQlFVHpIuk5TKRMmKgJMNHic/E8TOp6kTaJg3mQHRwil330m4TAhPvgnqulGkLcnZ0lO0BuwWHh0qByrNQNyIBZwHl1gfhE5iNBaQYfQpipGelSFVpAJRBZTnC0vDh1g2zcvknevfdqaejAe4gfR81yEeHtucFyx1djQQgN5MazmksM/IQ0Skicj5UOMzkJcuYiUWogbqlo63fmOOUAzJdIBNuoQrRUCk6XYF20zQXvTCmHJNsiJMMWIuGQq1x+qvbBcfoIO6xTYBenhcRIGjRBZ1a21AbhVMnLhqkKIguIkH1ZeWgAIqQmKnSYprdTUoLCJAVxC0EdL2/LhDkErQNxhzGM0LIlB6bgewsOyM+Lt8nDF3eQgY0qSHQAzHRod0nOSHl7ynLZGn9I3rzhAmkYzJWp3G8N6UCCc4HERtnZSX8kCPIjXatA4giERW2KAwZp0K732qJg8vI3XoL1zD4vTuoNQcLauWgX4LzB2iibQbYMJR2a2XZofymhIdCq0mTj3iOSmpomcRGB0rheHWkEzb0y4snGT/tNlTwIU7EpJfs9ufKEcuYhLQ5A43WgHJdD2sbZqUSwcWLm8k2OawZIJshuf0AUtOV4OZyUjnQNgRlcVVqEBsG0zwBxoLFGXAIgH3VaYdcIvmXaImUfysjyjfGSlJEl0VEh0qxyBWkUF4X0gF4fDDkcRsvX4FywUpONZFmAO+RUqlxZzwEpC5w2gnODSeIuZCUFpeQAAgmNnzxxnWRHpi/wDYnPDm8WYj6jRIYCYLebjTIteBOcJ1h4ndCkbMhMrknlGkVhS4rSrbuMsKOJl2DsBUCT4HwgG4gPRdtM7sQzThAcJ/YGohKHhMBE5cAIwmIRzoa5kY/KFIwSYbNzQioqUVCAXPLRHxIREirfDB4olUACtlAak6BWkCF80r2F82w58IRzrAzB5SAsBzTHwIBc1dJsuJeUFybXfPaHtG9QTZ68rIPEQrsjbKgg6ajIY2BGfzl7lQxHOLVBwLrbGiss48GKhLByIawdBS0MaevIg+aE9GCMA1iBQ0DkdpqCSHemNUiHBMmROQ4AMX/y8qBZuFpgpnF2Hsw2VHTdPTcvByQAeVFJ6acT5J4FfwMhn9gDYd4hjniVE4kDg0IlPxfmG4J3oLJzNJCdjBkQ9qAjUF4cOVsOJGbI+zf1khbRoepvPsKKz4uUwSMmSy1or8/AJKvISc7II0Ln6LEsWXmP7+xHpDnNiR0hwdDyHbm4RoOYc+ycaNjCJBCNJNOEfZh5kCUYcefaTLudmiWzg7olQRKAh0hHFAYUG5aHXP3Mx/Oh0Ai1jDk4bJKPcsDhD6QDX1GYdKOfQVrsuFaZ5Ycd/4F4w3QncNI3rYagPKQp7uv2XZDBFhIpWTk5uqyR04kCqGHbkM+5SD+UF0RLyyxHmlleqACS4HR1B1g7GPngyMGLPKQb/gXoDGM7CCdQ7DwUXCXzhMa+zAiO6ccNL0lw3iGdDExqlgL0wNt5Mjzhi0hOHGjHWEhoEsI/DjzogmNkAgcTdFY1M1ivoTJCGyExMPE9yc0T7GcxjruA4Un4yYIdrIUPhQimA+dMMVNZMBg37vwQisLEyhrgDME9OpMZLAsctQuHgFwkzQXNbH85k93JCo8CGYoSHcp+O2pM8NGBewHhUSiQEZAdRRdlS0BkrNB2xIcd9kEkHARAqdhBbyfRsqJqmPCFE1tBbDl5EbL5aJqkSY40qF1eJwHnogQ7YF+xsqbCv3nrNkn96hUlDpoAp3HkI51QKyAHYgYiywfZBsP/MBAMCZwL0EmeJMJAVAAnCJOTe5muZhQBFQ9mqINmPL5zRJYygkmU5FgdQ0nCkFPwLmmD6eWAGZnHbY94H5oD+3YCAlGZSWbMNqYcGgieLcBdZfLzuE1TtKw9kiGTdqTKi38skY2HkuScRnWlcWw0yA0Jj3IHKSQ1N1viEw7L+a0aS6SmM/1EY0AHmRyQnzJyLasT6cBrAhMwkPv0IaPzoEln43oOruUHhIMYGA9O97XBVBY4/GaZY+wYN6YlCIDbaOXhO/sWaf6yzLDCskM/BAQZjGuUka01/aQM7BJQmZCcdDqbRGPPCck0tzniDs0NaaZ5hTKtKxGQfk7kG8/CoPmaB8vAaQtFWiHP8A4JJxh+BSJdqY3agrhFFRKXmhs/6R/KEAmbWhm+IhS8h8YpEGkZBBbMp2M5Q0PDSc42TnmBv8xDNmoaN8Sl7MjNDXppQnC7kwmm1BqcN+idry3LLZgOSo8LJYAvES2z1BOWZuYJ827h963nKCOndKCo4S8QtADzDBqTmtG4zikmLJwFPuK69Z27Quj+cS5oKAiLftMpEfNp1zPWk5Yk2neFZputsx2kd/f7Y3Sd7ZsPXSmVUMqz8znpEpUOJZD1ndEwVOsCf7t+UEJqYQzrQFaWrNiTJE1AcLWiadKR7KFRIRMScwJkyZZ9ula3U9Uo1Cij3RGskJ5L1zi9g6LrkiC9TskZoBUDxg7XGV/8MhozCBpxYjpYfShW3ll+cP4gKxO/u9PKvOMJPkdyN40XnoW/2aik301ZLFPW7ZJU5EvnRrXk/ks7SS34lR8IeZkEqMwHknNkbXySnNuwhsSE0ARjuDSlkVYathv6E7VHQ3dFnyPC3CGFF5kGeo0vukSkBkZxaUVxWZwpT7jtUsNc3ihM3PgsSpkrw5hGFiz/+QxRHFnwOTPdB2UG8vI1611P8BrbEsbB8lMTpsDfwi9Z8hEc+db3EXde42UGyevcaYT+RDvsaDSg9XOqkjb01OB9CHKS4Aht5Yq+TVSGcqIhnTaCK/iJGyeaIL5EtAqVJ8w17+vuDLRQUCD1B3UbajcB8sHwXyUhKA7yonWDPzQtaXIVAO9ZvtMcU3/0grmOkMx3/GAh5n0rLPO/6xn843ws+kETBI2p7M+ERoNnK0cGax8Qp4FQA+Vz/DNp4Lu11H4RfOah8EGVkFyQK01lhk1z1oYwyDe5OZCJc6fQMtsYN+QFzRV66WCtdNV+/s9UIXTVQkGNRaXRp/mNF00YfF7nH+JB3asMsnKFgwWSPTUdjQOdpgkJkZoD0hnXiuSx+sF3+B3Pwv98aBJ7Uu1yOIu7KOdLvWpREheQo3ufUUcNRs3Pd0CDgmlIkzOSlRwaIAkuTyOI5KHMVuF0fTAQBkN5eIs7+nLAyqQ1HyJhu+THT8aV+RsIy4BbcNFwJMzqFgMrn/jB9wKpHbvuayOg30wZ0W8+3vWEppUSPgmOjae55g3mhjYOaADcfpo4aKBer/AZ6znGkX66txXjNWry1DaZB3Y5t15tubJLa2jlHEtHuQLBFfG0FGB/ZKV/IsG5M+1kxCwZTIaX3G82bOzP4GEwKSC1aeu2SnJIHCoFCyMrKwo5Mt2XlwUEB/BTv8M/RpNXOeFVr1svW37gAX4luVBD1A5phM9BCmoGNAPzHdSaKBsLKTUr/DB84xP0j2lM80TNSBQ8mp1OGMMkMM7pQ51X8tHRzSCH7rBLrSgE5i0nkHILJbd6Ywq9BsvBApKVK/+sqqkxg+BW/FipVA54o+/yHV5gmngQnLln/NBVD/ijn57kYIIwWqD1jk5lQYZxLzNyq/ZpoRFgi5/HNbsIIwTkFsixPoSbH8iBBbyTz8YK+YU/Ighh5oP06b/lN1/gM5rO+KdzKBkRC3iGZKtH6eEBkh/l5fI/J0w6fU8fM3HQX+Yr4JJfCc5cpt96G/8d+10DvQaRtSxCBt0wglcL8stAf+E/zWfGweWnG/xd+B0+Y2megdAyeZ/x06jieYvgOGgUnJcjTcpFS5sa5SXURoJD2dC0LEuU7aEz/2mCY2JSTpIM85MaFDdRNGYHNSzTn1HES8RFCc7SePCeho3rKC68gnQonuD4DCssC7qeGYowbRygADHZgmgegVjxx/dpovGP9AExfYLPMY15che3UQpiZw61UBAC+wVDYObmocDkIm8CUCgDYM7RzGHfHMktyME1pwjRkpFgscBvtuYF8aQcBcUFv0hwjDfAqSK8bxEc+0vVA3znGyQzXtfUMa/ouyaOuF7gr4EhRRKc8Y/z1XRUFiZzfkiQ9qMF8RnkFaNLbSKQG4FyEAfP8LxPkl6wM0RNQ0cgzHQ8ZZEqQWn0e4Fc+I5/howZEX3M/Z7rdx7umYEudjOgkpvL6h9hPadwxY0Ep9mHe9ZSQH63wrRIhrD88wTltKY4GW3Z9a4X+JzVoGgAhMeH9yskaivt2SXA93UTWT6N62yoApnPKDCBaEA52EG/zT58yBPKXVzBPCmcYQTnHTV6dypGUUsCk+HH8rv4jLAyVAmvQEYUKjhPHzWxrAJqAeEy47k7r5q0fMEzWVlAXF8tmGR3PcPeaK3AIB1qBPBD1xF6lMZCzxeCaUF5RwsrSU1/gxzwnQ2LdojDK9PQsHLgOb3miinVO4LPmivmNy5ouriu8X9PCayn3M/RX3OlUOXDRf5mHCzfTJqYZzz9dMOkMfsOKS/eNr/xk7+43tLa2cWcM8vf/AV/C8LGfcaTT+kzpwIn4q8l1z8TLEvaP41014OQNA9cN8sMZ9go6r8FVmKaemB+8X/vRLYqmic4ATkjI0OnDKjm5rpOv4w7TilwtYA81CM5OUUcOfTnOO94gWEyM6kZaiXn//qdBREfKDhKbgQuWPdNfxSvk/io0Xo6Cs8XDLwl4m/3c5Yz/ng66xl+mt/mWSucgmeJgt8uv6DZmmdVbPMIvnBqh0XGrGQmrgR+FMAVd/p1ymBkKJn7Z4NtDZsopinrQdmTW9njNBLcyWcyTSFWeJqFpuKfisJiycdqY/35gvs5y6WlpemW6P/73/+KWaZWFEbJsPxAwUG8fv/tN+l14YXq14kS3MnBHYdTj1MdHxOPQpqjH/9IlGUOnjaCY6truRMFC+2ePXtlyZKlug711ICVg6NInFphmaa+ZaU8ns4BDW7btq26/lXnbJWInNzv8ztf4c7EXImxctUq80ghHN9Pt38nAhN+WcGXDNZv657X7WPC/c7xHE1TFueyi4sfpx+quPPT/Cw1ThvBkdcsV3KYh9mpOmzYULnt1ltkw4YNOrveTGOwXHHwfAbmEFjk1GtGbv8L4nucOLOCsu/u+utvkGeeeUY++eQT7WB3ozQyHy+NSgDLXPTlyhJl7Z8f/3mUmuDogbfjiJznlRM7k8GARIR6r5oNO+954LMzj8t78rRDn6Rnma4kA5IERz1JBjqKxgXMSmim0rB/zBCFITn6S+chNX8oeN8BrYwjW1xSk4dwOZrIzR05TYH+m6kO9BtO+93cv0m+nL5AmUwYuIp3CfqtI5MIjvGyrhO1a9eWW2+9VTp27KjvEnyeI1nW3CnGuWBuHp7hoAQndeqEZLxizqMwUK2GRKl+0VlxLRpn+hkYFITwnAUTPhE6xwLUb6YtZSkKjtjZJCg4yIQFcGY/w9b5Wpo3lnYFv3R0jzB5ZbZVMo55aoVtaWUcpdQ95ZBOZmQWKEKExm8//PBGqXcT8YX09AzPuuPWYqzyaT6OCUNYeXLkSIKsXr1aFi6YL1thBjZs1EgyMjPk4MFDUrVKFT4piYlHYb4ukbCwMN0+KTklWX77/XeZPOlPOXgoXipWrCDhEeHqp+W3JYV1zQ1WYkOCWZmZsmL5cvlr6hSZO2eu7Nq9W6pVqybhYaEFlZnIzMiQX375RRf19x/QX8LCw9V7chfX7yUcOSLTpk2XKVOmyOLFiyQT/pYvX17ldVd4gfl9VFatXqWDFuXKmY0ISewLFy2S/fv3S81aNeXw4UMyadIkmTp1qhyMj5f69RsIN/DkodhMn4kT/5Tp06frYddRUVES4Yo3je7iwLjy+aVLlqrcTMMVK1doOLNnz5akxESpUaO6rrQw6VMYuQh7+bJlMg0yzZo1S7Vs7txSoUIFbXwsrFm7RrZs3aJnZzDuBEd+HXaHxnvrli1Sq2bNQu+Q1hcsWIC0SUCaVdA09smzfvwrQEXhjNpNxBv0Lj7+UCFTVEf6Xd9ZPzxuFQv6wxZ97Nix8spLL4MUMrSys/IFhwSj4kbK/IULNCFmzZwlDwy6Xx597HGpV6+uPPXUk7onHDUv+lMBBPcy/Ljggh6uhDMaH2FpFga8ZgYz9u3dK6+99hr8nqkaDB/n/DQSz0MPPSgDBgzQCk9/jhw+IgOvvlrCIyNk+PDhUg7kRT0uN8eh8n/w7ruSkZ6u86ZUM0Qobdu2lWeffU5at25dIMvcubPl3nvulmuuu06ewz3KmpOTLZ07dVYN6YsvvpDHHntMjiYc1S1wmD6t8P77H3wga1avkVdeflm3bec9TlatV6+evPvue9K8eTNXPH2nPP2ZPmOaPHDfIHnk0cESjHh9+P4Hmg4OaJlEoyaN1XSmn0wM/jF9E0F+b7zxhkz+6y89vYpy2nOpVQbIbbffLrfddrsuDWMUP4Cc3337nTz73LMycOBAlYlhHzx0UHr36qWy8wjIs88+R9OE2uTWrdvkisv7yFldzpavv/5KtUxdg1wEVtz87PdPBidTV67sex7cyaBsaLIE0G6cEpIboVoH3Pnnny9Dhw+Tiy+9RPeGf/qZp+XHoT/IDz/+oK05KwhZn4Q2GRrHc88+q4c9//jjjyCbn+Sqq66WQyDcQfc/IIsWL6bH6m9R8BodT59PkIcfeggayRQ1Fz/97DMZ8fNI+d/jTyAkm7z04ktaEa1RXWM8GlK2wO/U2Eg61FLeePMt+WXMGMg+VPr27afntD7//P8pQVjIycnVY9loulp+MQwSVmpKqjz33HNy6aWXytBhQ+VjkE2zZs1l5YoV8uILL8hrr74q14IYR/w8Qn4aMUKJc9PGTTJkyCdKqsdDnsOJcOwybtx4GfrjUHnu/56TYT8Nly9AKm3bt5MN6zfIM0hbmp3mUB6bpjllGjdunDRv2lTeevtt+Rnp9MGHH0psXDn54vPP5ZVXXlaNm43D5ZdfoV0FkydPNimG5GZerFu3TrXaXMR/0qTJeNbIS7N4w8YNkpOdg3zogDC5wsCdxoXAFtVyfvjhwmkjuJMB+3LY+rdt206qV6+ufW9169eX9h06QCtprs9QkzBF3iarVq2Um26+BRrFm9K+fQdp266dvPjSS/L4E09oJf/6iy9Vu0At0Dd8gcTCCrsaJlP37ufJl19+qZpfq1at5XZoJJ+AMCIjImTETyNU4zAvmQ9P0J/kpCS55OKL5bvvv5fL+vTRnYe5q/ALIKT2HTrKtq1b9RwJT2L0ht4DCVCTO+ecc6A9PiQdEP+LLrpY3nv/PdVo5syZI/3699ONPdu0aaPuhRdflIioSJkxYwZ8YaUvWcXfv28f0u91uQoaKcn9vPPOk/fee1/NykULF+pefIwwSZijvTNgejdr1kw+HjJErrjyCoTdWi677DIZM+YXaQLSmwENeNPGjdoi16pdS+rUrSdbtmxF2iRreNSOmQ5c1VG3bl3dlZlzChkGNbiNfBcNG8mcKyqK2xnGDz98odQE5+pmL+R08qbHlYIJpiWC+z3tzIfaFxhEc0Xno0sQSI/nKrA1p6lCEtRooOWuVr0GTKLb8JujksHCAzpCQ0KlD0yc6jWqy6rVq6HxcfCiaLTZkW0GJxwycvQoVKoQuQ9mb2R0FPlFNRYuZWnXpq18/e338vobb8FEDceb8Es1QjjVHmDOwgXZguSmm26Qd997B9pUSwkLD4EmZ+ITFhYMNbwiCDITlTlNK7Ll8B/+mcqtjsIB1Fzuu/9+CQ+PMJ33CKphw4aIVw1Nk7vvvtul1tu0f4tkUbFCBWg/udASk9TPY4NE6pSevS6Udu3b64Jzkg7jXKVKZenUubPwwJEdO3aoTHY0GB9//LEOvNx7731SGQ2R+qLh5EvNWrXkUhAdTzOjxkatj9pau3Ztda7gocOHdDOD7Kws7T9l3+pVA6+WRDQKhw8fNpo5wl6/dp1ERURKA8SV+V3seRosc+qOF08//ks4ozW4wvAuuCQT/M+a7qpU55x9Dlr4ECU/C6xwFStW0sEBVvT4+INaebxh9VGxo3/Xrl0SFRmpmom3OUuzuEOH9tDEOiuhmPtw+uF+ltc5MklNZydIgZX8z4kT5dvvvpPPYbptodaiTx67QtJHi5zi4uJU4yHpEOyj0800cS1EBwBcQNgM36SN+/3iwfvmmZo1a4IwOR9Qfyp4p3r1arqHGe+R/BivrYgDw+/WravGles1LdC0bovGgH1yq6DpcSCEfZYtWraUHJDazh079bmU1FQ1pa+44ko5u0sXST6aqCYrTVpuRrBu/Tpp0KihDigxHt754Ycfx8I/iOAsGA3HFypXroSK5hUl1AcSUVy5cqqRJEFD8AVWHBIGJ9o6HXZjEnsQpSdCoBXSY6uyeX8SJNF4mHPsg7vyyitl8EMPa3/Vxx98qB3tu0B6hK8Kq1d8XCeZMA4kDwvWzhI034uiqB/HAzVFpoNnGpO4SDhussyH5pUtmWnpEh0TIzEwX80pZh7vwI+Y2BhNh7179+LTTL1p1aqVEuWixYs0HksWL4YWmy79YWK3a9de4sqXkzmzZ+vgBkdW2ShdDXOZ/vvhx4nitBEcR0eM801OJQE787VyqxdF/cnkVt+o6GrqKYy5yOkaiQlJavLEodL5IkiLaKgl8ft+kJMnx/Ca5dgf5jl/zRc4deLZZ5+VkSN+1kGP9z/8QPvifhw+TEbBBO7arRsYi3LQTzNPTLVIBspwCq6bMMlV/FTTDZ+MA52b0D3ixHmIOhfRIwIlBPu5TPq45eL3UE7PQNgWOJJNOWhucoSY73hOnWHIGjq8qlC+Aj5AnHi+EUxRms8cnebzv/32mzRq3FgbIDYoNGvnzp0nqdDsOEgTDnP7gh49XFrlicfHj/823CXyFIPdU5Y7WbDesf+J20OjtLuuurFq5Uod2TOV0oCaA7U2zqOKiIhwzc0qqg2QOElanAZSvkJFrbS7d+923XWDWghPzKKz+vNIRoYQXGQE0IRbMH+B1K5TWwc5Ljj/fGnXtp20hgZTt149CaNJiUfN8yQUy3mi8G8+6+upUwEfyVsI7Odr2ryZapU0KS3itUAZ165dCw7nVJZWqhmS0GjK9uzZU9Nv/br1sm7tOmnapIlER7GvM0BPP+N+ZMuWLZMZ06dL8xbNdT6fZ5768e8F+YHNaFmV8VKXGnrg7bz7eTkPruQo6iO3UOYaUSo86WkZwoOftS5pQHCu7+s3rJW//voTJJSL39wI0awUWLNmtU6Kbd6ihYSGhYMo2YFvNCCrM98kK2fl5+txhFyN8P3334Iws1ApbSBVajMie/ftkfvuu1fuH3QftDSOouI9Sw6XH3QctMjJzdFJvyRWVmy+z0/28/H4QwrOuX1uWeBHIblc11zgd0bV85or8nCeaXbqwb5IznMjaXGkWbU41fCMqZ8O83XS5Mn6XO/eFyF18If7PJuAU13YyIwa/YukpaZJ23acAmJ2x61evabExsTJ6NFj5OiRBB3J5TskTzZCycnJOpHYNEgMz49/IwrXJuM8S31JcXpqA0DhTkZAA5vExMRoIR82dKjMnz9PFi1apNoUTSp1uFelShV559135ccff5DVq1bJSmh038MsfOLxx3V+2XXXXecaaTw2OImXy6Ym/DFB3oV/S5Yu1flmk/+aLC+98KJsQgU7+6wuSlYGRWPGcJo2aarTLn6ADJs3b1FSmzhxojz04EPat0TCY9wsIlPi4j8XgRUmsuKgnpx2MH4XXnihHr69ePFieeWVV2T27DloZNbLzFmz5PkXnpeluM75eJy2QqIjmE8VK1aU6tWqy+iRI4WDop07d1aNl6RXuVJlHf2dPWumpGdk6IguSZTvkdxuv+02ufLyPvLUk0+B5PwE928DS3xJSn1JcfoIDvXQcicKEknfvn0lPDRM57rddeedcs/d9+g8NJpIbM1JBr1699Z5Zm+//Y6uLLgehPb6a69qJ/bDDw+Wfv36uYjE5bEPGKKsLJ8MGaLm6nfffSfXX3OtXH3V1fLgoEEwO+dL74svlqeefsqj0gboKKHR0kwEOWL48CODtS9uyMefSH+EfeUVV+hgAzW7Cy44X1c2eM7rouZD89vyh06v4Teftfz2TEId1SwYzXWDv73fKx4mHJIWP/GC67oBf7KTnyOi1kgptacw5AdXJ1StWlXG/fqr3AmNjvG884470Dj8oVM7Pv30U6lQobzmkYWYmFg9kJtri9u2aS01a9ZyyWjTZTo9YMJyB1yG16plK13KxbhwIjSnkXDHFi4lO14/qB//PFj8UFYkV+ZLtdgSc12jJ5HRRHVvjmcK8omABEJ/adrNnj1Lp3rExkbJTTffrKOH06dPkztBeoMGPSCDHhikayqp4SUlJaLyVYOZ01m6dOmiJFQ8KKARkisPKOHu3Xtk2bKl0L42q/ZQCxWxbbu20hkkSgKzRi6zsrJk6tQpShA9evTQewpUWvZPsS+Jc7s44sglWt3PPVenTnCqxIW9eukOpsTefXtl3pw50rBRQ9WMWOkd0FJHjx6tBHH99ddrRWeWWaQ1btxvOtN/4DXXgJzMtaCgECWDSX/+KalpKdK/f39dG1ocWAL27dsts2bPlhYw49tC41Ki88AKaLDr16/X/jMSGu9bRSchIUGWLl2mGnNycpLebw0/zup8FggrwjyL5yxy5GurV6/F8yt0VLVDh45KmJSbxsiuXTtl/oL5appeddUAfYddFNmIJ9fyrlmzRic6N2zYoCAd/Pi34Aw/k4EaCwt8WRIcQZJjJbBcUDAnfTo0Ibi4/K477pR777sXmtrDqlmZaFELMnvI852C3Sh8gs+bjnCCxMLKwwmqFJeVjXHjgbqcn8VwraSj31YfEyuzVen0Lp7hc3oNjpVcQ8I1khZ/61mues0yuawdUkgMZvSRE2ut+W+ecDjMs56nKNntTl2zqzuwQMsxmqa55wsmHM47g3PJqk7v0YTmUyYeli+8bgjLpgMJfEgHgEDATDuGaVKB75t4aRoAJj34nOlHCwmhJst1uvTd9D3y8Gg+zrgRJo34fr7JB/qvshUfLz/+iShbgitaY04QLF6WYzHWqu4lRVlMLjeVxEyLoFnHws0Z/FxDqec4oqKwEnCiL6PF76xs1ruuunUM8AFUdFNX8S7NMZhtqEg87RxVEn6H4n9zypAxi82zJAg6a5sgKyv4Pk9jMisvcE+Tm8SB63BBgaykfNcQConYcioL0w2JydFas8Dc+OvpmBbexB0M8ucgh5VWTLdjQdMWjwRAfsoUSHkRnhUXlREyaZrik85or4b8+J0yh7gmWXP1iKFHEwcTR3e6mO/UNPEOyI2ghm5Wkxgi1fSHHNY75rqrcXMVfj+5/Xthcr2oO1GYklYKsIhZjvBV5E5GMF+wNACFBmSIgUQWEhqOCsGKRGIzBGgq10mEXhAhVlOXlqC/8aGVyl1JLfA5/u/p9NFC7/HT/Z3w9sfAW2YTT8tfT+f21+2nCdRyJQX8K/K4FQ6Ae75k8LymIsAZUXgN/xcjt28YDwpnWeHn6Z/x049/O6ycL1wCTgylNlGN8WFAA4b9Qez7Kh6lEbcoKH5qapps2LBeqlev4VqBQI2iaBj+iuGHH2c6yvZUrTIjOJIbTdG0jHRJT0tzXXXD7PJr4G3C+uGHH34QZ/R+cMdSkEhqlvPDDz/8OB0oU4KjLuhwOEBitiLODz/88ON4YJ90sZuangTKluDgOIWCI45FnR9++OHHscG+c65MKiuUGcGZUcTiQdOU8+H8JqoffvhRHDgjwpreVRYoUw2Oc5SKXT5jbeHjZzg//PCjABymdDsu1SvL2Q5lRnAcRTWnWLku+OGHH36cALg6xTpOsqxQaoIj16oDsdntDpAcN7U0vws5f0+cH374UQBygcUHXMUToNuKlfVc1TIjOK4rzM7m6fHua4Wdf7jBDz/8ICxyM1xA6y80NEwiwiP0d1mizEzUrKxsXU9o1lGS0vzwww8/vFGUG7gxRExUlIvuyhZlQnDc3YHnFFgw6wXNAmvjTKS4aPx4Cyc8zdrTjX9LuJZ/ZeVnWftHnCr/ytLPkuDvCpf4u8M9mbAtbuCuNdx9JiQ0WM9J0dHTMjZPiZNeqsWX6HjqOg84duroaHECOnUbIu74YW2dY1CUXz0TzT3g6vnOsVBSvrakLwwrbHe4x4qTN05exqLhEqX3j3D76TvORVE0zmXtH3F64nzqy43vcH3HuSiK+ucbvv0r6zT0jaL++Y5zSf0zIJeFh4dJTHS0kp61t2JZ44QJzmSJ0cQ4qJCamqL9b8YX904PSmT4yi2NuC1ObEyMbhtOTY8an+7w6plQrk/fiedx8ZgoeKEEKOyn73CJkvp58jL6Lqil948oizQsPm1Ozs+y9o8o6zj7RlH/fIdbUv+I0se5rNLQN8oizi5ewD/Yc7pFFteamsOECp4wX8oYJ0xwFp/b7bl6aC/73chu+Yip5ZXZ04y2dbBEREbqPmEW8RHcIJEnmudkGbOW8+ccDod+90ThjCs7eGaQL5yqcIljhX0y4ZZ1XE5F2pzpcS4p/q5wibJOw5KirOLMg8k5xy0kKBjamlsROtU4KYLjK+kZ6ZIDcqM2RgQVbIJoziMICw+VYETGoLCaS7amFqisXVzouOV+q/D7xaNkaq6O5h4j2u5TwPilpBlRMhkDPHZV8QYLi1uq0vtHuONCn4+f1QFMw2M8dqL+MY9tx6gFZR3nk/GvpOUmgD7/DeXmVKRhieNcqEupKNxxPr5/1N5KmiplhZPW4IjiXi3Kzr4TSStTCeAscaYx3OMnYUmnq1gTW0qGkslY1nEua/+0MpUgztpNgb+S4EyPM30sCWzwrySloeTlhun396RhSeMcUEL/nCVOQx811DMJSpJsJ4CSSVUMSGS+nB9+WECJcH37N8Bftv9pOKlBBs9PTxSf/b6DKGnhL6mmUPICWHK97ESeLAnKOs5nun/EmS9jyfwridZPmKdK5qf19PFw5se5pP4VAyuYkiZbCXHCBGeBL3m+SLnKWDY//PDDj1KhVCaqH3744ceZjJPW4Pzwww8/znT4NTg//PDjXws/wfnhhx//WvgJzg8//PjXwk9wfvjhx78UIv8P3u2RPQZ43iAAAAAASUVORK5CYII=",
"text/plain": [
"<IPython.core.display.Image object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\u001b[33muser_proxy\u001b[0m (to chat_manager):\n",
"\n",
"\n",
" 1. OCR Agent: Extract text from this image: ./samples/02.giftcard.message.scam.png\n",
" 2. Content Agent: Evaluate the messaging and claims\n",
" 3. Decision Maker: Synthesize all analyses and make final determination\n",
"\n",
"--------------------------------------------------------------------------------\n",
"\u001b[32m\n",
"Next speaker: OCR_Specialist\n",
"\u001b[0m\n",
"\u001b[33mOCR_Specialist\u001b[0m (to chat_manager):\n",
"\n",
"\u001b[32m***** Suggested tool call (call_ta6tNtpskpnHXvaWicWmYHi8): ocr *****\u001b[0m\n",
"Arguments: \n",
"{\"image_path\":\"./samples/02.giftcard.message.scam.png\"}\n",
"\u001b[32m********************************************************************\u001b[0m\n",
"\n",
"--------------------------------------------------------------------------------\n",
"\u001b[32m\n",
"Next speaker: user_proxy\n",
"\u001b[0m\n",
"\u001b[35m\n",
">>>>>>>> EXECUTING FUNCTION ocr...\u001b[0m\n",
"\u001b[33muser_proxy\u001b[0m (to chat_manager):\n",
"\n",
"\u001b[32m***** Response from calling tool (call_ta6tNtpskpnHXvaWicWmYHi8) *****\u001b[0m\n",
"Congratulations!\n",
"You've won a $1,000\n",
"Walmart gift card. Go\n",
"\n",
"http://bit.ly/123456\n",
"tp claim now.\n",
"\f\n",
"\u001b[32m**********************************************************************\u001b[0m\n",
"\n",
"--------------------------------------------------------------------------------\n",
"\u001b[32m\n",
"Next speaker: OCR_Specialist\n",
"\u001b[0m\n",
"\u001b[33mOCR_Specialist\u001b[0m (to chat_manager):\n",
"\n",
"The extracted text from the image is as follows:\n",
"\n",
"---\n",
"\n",
"**Congratulations!** \n",
"You've won a **$1,000** \n",
"Walmart gift card. Go \n",
"[http://bit.ly/123456](http://bit.ly/123456) \n",
"tp claim now.\n",
"\n",
"---\n",
"\n",
"### Cleaning and Formatting the Extracted Text:\n",
"\n",
"1. **Remove unnecessary characters:** The text appears to have an odd break (\"tp claim now.\") which might be due to OCR error.\n",
" \n",
"2. **Correct the message structure:** Creating a more readable format.\n",
"\n",
"---\n",
"\n",
"**Final Cleaned Text:**\n",
"\n",
"```\n",
"Congratulations! \n",
"You've won a $1,000 Walmart gift card.\n",
"Go to http://bit.ly/123456 to claim now.\n",
"```\n",
"\n",
"### Next Steps:\n",
"1. **Evaluate the messaging and claims** based on typical characteristics of scams. \n",
"2. **Synthesize analysis** and provide a final determination on the legitimacy of the message. \n",
"\n",
"Would you like me to proceed with evaluating the messaging and claims?\n",
"\n",
"--------------------------------------------------------------------------------\n",
"\u001b[32m\n",
"Next speaker: Content_Analyst\n",
"\u001b[0m\n",
"\u001b[33mContent_Analyst\u001b[0m (to chat_manager):\n",
"\n",
"### Evaluation of Messaging and Claims:\n",
"\n",
"1. **Common Scam Patterns:**\n",
" - **Too Good to Be True:** The claim of winning a $1,000 gift card is a classic scam tactic. Scammers often offer substantial rewards to entice victims.\n",
" - **Generic Greeting:** The use of \"Congratulations!\" without personalizing the message is common in mass scam messages.\n",
"\n",
"2. **Identification of URLs:**\n",
" - The URL provided (`http://bit.ly/123456`) is a shortened URL. Scammers often use URL shorteners to obscure the actual destination, which is a red flag. It is advisable to check where this URL would direct a user since it could lead to phishing sites or malicious downloads.\n",
"\n",
"3. **Urgency Indicators, Threats, or Pressure Tactics:**\n",
" - Phrases like \"Go to claim now\" indicate a sense of urgency, pressuring the recipient to act quickly without thinking critically about the legitimacy of the offer.\n",
"\n",
"4. **Inconsistencies in Messaging:**\n",
" - The abrupt ending with \"tp claim now.\" suggests a potential OCR error or deliberate attempt to confuse the recipient, further indicating a lack of professionalism associated with scams.\n",
"\n",
"5. **Legitimacy of Claims or Offers:**\n",
" - Large corporations like Walmart do not typically give out gift cards in such arbitrary fashions. Any real promotions would likely require personalization and would not come through unsolicited messages.\n",
"\n",
"### Final Determination:\n",
"\n",
"Based on the analysis of common scam patterns, the use of a shortened URL, urgency indicators, potential errors in the message, and the legitimacy of the claims, it is very likely that this message is a scam. It poses a risk to individuals who might click on the link without verifying the legitimacy of the offer. \n",
"\n",
"### Recommendation:\n",
"Do not engage with the message or click on the link. It is advisable to report such scams to appropriate authorities to help prevent others from falling victim to similar tactics.\n",
"\n",
"--------------------------------------------------------------------------------\n",
"\u001b[32m\n",
"Next speaker: Decision_Maker\n",
"\u001b[0m\n",
"\u001b[33mDecision_Maker\u001b[0m (to chat_manager):\n",
"\n",
"### Final Decision on Scam Probability\n",
"\n",
"After gathering and synthesizing information from both the OCR extraction and the content evaluation, I conclude that the probability of this message being a scam is very high.\n",
"\n",
"#### Detailed Explanation of the Decision:\n",
"\n",
"1. **Content of the Message:**\n",
" - The message claims that the recipient has \"won\" a significant prize, a $1,000 Walmart gift card. This type of claim is a traditional tactic used by scammers to lure individuals into providing personal information.\n",
"\n",
"2. **Use of a Shortened URL:**\n",
" - The inclusion of a modified URL (`http://bit.ly/123456`) is a major red flag. Scammers tend to use shortened links to hide the destination, leading individuals to malicious websites that can steal information or install malware.\n",
"\n",
"3. **Urgency and Pressure:**\n",
" - The message creates a sense of urgency with phrases like \"Go to claim now,\" encouraging immediate action. This tactic is a psychological manipulation commonly seen in scams, meant to prevent the recipient from thinking critically or researching legitimacy.\n",
"\n",
"4. **Nature of the Offer:**\n",
" - Offers of large monetary gifts or benefits without any prior engagement or purchase are usually inauthentic. Recognized companies such as Walmart typically have established promotional methods and would not distribute gift cards in this manner.\n",
"\n",
"5. **Inconsistencies in Messaging:**\n",
" - The message has grammatical inconsistencies (e.g., “tp” instead of “to”), which can imply poor crafting and possible scams. Legitimate communications from companies are typically well-written and free of such errors.\n",
"\n",
"### Final Determination:\n",
"\n",
"Given the above factors, I assess the probability of this message being a scam to be exceptionally high. It employs multiple red flags characteristic of phishing and scam communications, suggesting that recipients should avoid engaging further and should report it to the relevant authorities.\n",
"\n",
"### Conclusion:\n",
"Please refrain from interacting with this message and keep an eye out to identify any attempts to impersonate trusted companies.\n",
"\n",
"**TASK_COMPLETE**\n",
"\n",
"--------------------------------------------------------------------------------\n",
"\u001b[32m\n",
"Next speaker: user_proxy\n",
"\u001b[0m\n"
]
}
],
"source": [
"image_path = \"./samples/02.giftcard.message.scam.png\"\n",
"display(IPImage(filename=image_path))\n",
"\n",
"workflow = ScamDetectionWorkflow()\n",
"results = workflow.analyze(image_path)"
]
},
{
"cell_type": "code",
"execution_count": 102,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'content': '### Final Decision on Scam Probability\\n'\n",
" '\\n'\n",
" 'After gathering and synthesizing information from both the OCR '\n",
" 'extraction and the content evaluation, I conclude that the '\n",
" 'probability of this message being a scam is very high.\\n'\n",
" '\\n'\n",
" '#### Detailed Explanation of the Decision:\\n'\n",
" '\\n'\n",
" '1. **Content of the Message:**\\n'\n",
" ' - The message claims that the recipient has \"won\" a '\n",
" 'significant prize, a $1,000 Walmart gift card. This type of claim '\n",
" 'is a traditional tactic used by scammers to lure individuals into '\n",
" 'providing personal information.\\n'\n",
" '\\n'\n",
" '2. **Use of a Shortened URL:**\\n'\n",
" ' - The inclusion of a modified URL (`http://bit.ly/123456`) is '\n",
" 'a major red flag. Scammers tend to use shortened links to hide '\n",
" 'the destination, leading individuals to malicious websites that '\n",
" 'can steal information or install malware.\\n'\n",
" '\\n'\n",
" '3. **Urgency and Pressure:**\\n'\n",
" ' - The message creates a sense of urgency with phrases like \"Go '\n",
" 'to claim now,\" encouraging immediate action. This tactic is a '\n",
" 'psychological manipulation commonly seen in scams, meant to '\n",
" 'prevent the recipient from thinking critically or researching '\n",
" 'legitimacy.\\n'\n",
" '\\n'\n",
" '4. **Nature of the Offer:**\\n'\n",
" ' - Offers of large monetary gifts or benefits without any prior '\n",
" 'engagement or purchase are usually inauthentic. Recognized '\n",
" 'companies such as Walmart typically have established promotional '\n",
" 'methods and would not distribute gift cards in this manner.\\n'\n",
" '\\n'\n",
" '5. **Inconsistencies in Messaging:**\\n'\n",
" ' - The message has grammatical inconsistencies (e.g., “tp” '\n",
" 'instead of “to”), which can imply poor crafting and possible '\n",
" 'scams. Legitimate communications from companies are typically '\n",
" 'well-written and free of such errors.\\n'\n",
" '\\n'\n",
" '### Final Determination:\\n'\n",
" '\\n'\n",
" 'Given the above factors, I assess the probability of this message '\n",
" 'being a scam to be exceptionally high. It employs multiple red '\n",
" 'flags characteristic of phishing and scam communications, '\n",
" 'suggesting that recipients should avoid engaging further and '\n",
" 'should report it to the relevant authorities.\\n'\n",
" '\\n'\n",
" '### Conclusion:\\n'\n",
" 'Please refrain from interacting with this message and keep an eye '\n",
" 'out to identify any attempts to impersonate trusted companies.\\n'\n",
" '\\n'\n",
" '**TASK_COMPLETE**',\n",
" 'name': 'Decision_Maker',\n",
" 'role': 'user'}\n"
]
}
],
"source": [
"import pprint\n",
"\n",
"pprint.pprint(results.chat_history[-1])"
]
},
{
"cell_type": "code",
"execution_count": 98,
"metadata": {},
"outputs": [],
"source": [
"import json\n",
"\n",
"\n",
"with open('results.json', 'w') as json_file:\n",
" json.dump(results.__dict__, json_file, indent=4)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.1"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|