import gradio as gr import spaces import torch from transformers import AutoModelForCausalLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("Upstage/SOLAR-10.7B-Instruct-v1.0") model = AutoModelForCausalLM.from_pretrained( "rishiraj/meow", device_map="auto", torch_dtype=torch.float16, ) zero = torch.Tensor([0]).cuda() #print(zero.device) # <-- 'cpu' 🤔 @spaces.GPU def chat(prompt): conversation = [ {'role': 'user', 'content': prompt} ] prompt = tokenizer.apply_chat_template(conversation, tokenize=False, add_generation_prompt=True) inputs = tokenizer(prompt, return_tensors="pt").to(zero.device) outputs = model.generate(**inputs, use_cache=True, max_length=4096) output_text = tokenizer.decode(outputs[0]) print(output_text) return output_text #print() # <-- 'cuda:0' 🤗 return f"Hello {zero + n} Tensor" gr.Interface( fn=chat, inputs=gr.Text(), outputs=gr.Text() ).launch()