File size: 21,823 Bytes
c728b50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
import os
import glob
import time
import threading
import requests
import wikipedia
import torch
import cv2
import numpy as np
from io import BytesIO
from PIL import Image
import base64  # Added import

import gradio as gr
from ultralytics import YOLO
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
from diffusers import MarigoldDepthPipeline  # Updated import for depth model
from realesrgan import RealESRGANer
from basicsr.archs.rrdbnet_arch import RRDBNet

# Set environment variable for PyTorch MPS fallback before importing torch
os.environ['PYTORCH_ENABLE_MPS_FALLBACK'] = '1'

# Initialize Models
def initialize_models():
    models = {}
    
    # Device detection
    if torch.cuda.is_available():
        device = 'cuda'
    elif torch.backends.mps.is_available():
        device = 'mps'
    else:
        device = 'cpu'
    models['device'] = device

    print(f"Using device: {device}")

    # Initialize the RoBERTa model for question answering
    try:
        models['qa_pipeline'] = pipeline(
            "question-answering", model="deepset/roberta-base-squad2", device=0 if device == 'cuda' else -1)
        print("RoBERTa QA pipeline initialized.")
    except Exception as e:
        print(f"Error initializing the RoBERTa model: {e}")
        models['qa_pipeline'] = None

    # Initialize the Gemma model
    try:
        models['gemma_tokenizer'] = AutoTokenizer.from_pretrained("google/gemma-2-2b-it")
        models['gemma_model'] = AutoModelForCausalLM.from_pretrained(
            "google/gemma-2-2b-it",
            device_map="auto",
            torch_dtype=torch.bfloat16 if device == 'cuda' else torch.float32
        )
        print("Gemma model initialized.")
    except Exception as e:
        print(f"Error initializing the Gemma model: {e}")
        models['gemma_model'] = None

    # Initialize the depth estimation model using MarigoldDepthPipeline exactly as per your sample
    try:
        if device == 'cuda':
            models['depth_pipe'] = MarigoldDepthPipeline.from_pretrained(
                "prs-eth/marigold-depth-lcm-v1-0",
                variant="fp16",
                torch_dtype=torch.float16
            ).to('cuda')
        else:
            # For CPU or MPS devices, keep on 'cpu' to avoid unsupported operators
            models['depth_pipe'] = MarigoldDepthPipeline.from_pretrained(
                "prs-eth/marigold-depth-lcm-v1-0",
                torch_dtype=torch.float32
            ).to('cpu')
        print("Depth estimation model initialized.")
    except Exception as e:
        error_message = f"Error initializing the depth estimation model: {e}"
        print(error_message)
        models['depth_pipe'] = None
        models['depth_init_error'] = error_message  # Store the error message

    # Initialize the upscaling model
    try:
        upscaler_model_path = 'weights/RealESRGAN_x4plus.pth'  # Ensure this path is correct
        if not os.path.exists(upscaler_model_path):
            print(f"Upscaling model weights not found at {upscaler_model_path}. Please download them.")
            models['upscaler'] = None
        else:
            # Define the model architecture
            model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64,
                            num_block=23, num_grow_ch=32, scale=4)

            # Initialize RealESRGANer
            models['upscaler'] = RealESRGANer(
                scale=4,
                model_path=upscaler_model_path,
                model=model,
                pre_pad=0,
                half=(device == 'cuda'),
                device=device
            )
            print("Real-ESRGAN upscaler initialized.")
    except Exception as e:
        print(f"Error initializing the upscaling model: {e}")
        models['upscaler'] = None

    # Initialize YOLO model
    try:
        source_weights_path = "/Users/David/Downloads/WheelOfFortuneLab-DavidDriscoll/Eurybia1.3/mbari_315k_yolov8.pt"
        if not os.path.exists(source_weights_path):
            print(f"YOLO weights not found at {source_weights_path}. Please download them.")
            models['yolo_model'] = None
        else:
            models['yolo_model'] = YOLO(source_weights_path)
            print("YOLO model initialized.")
    except Exception as e:
        print(f"Error initializing YOLO model: {e}")
        models['yolo_model'] = None

    return models

models = initialize_models()

# Utility Functions
def search_class_description(class_name):
    wikipedia.set_lang("en")
    wikipedia.set_rate_limiting(True)
    description = ""

    try:
        page = wikipedia.page(class_name)
        if page:
            description = page.content[:5000]  # Get more content
    except Exception as e:
        print(f"Error fetching description for {class_name}: {e}")

    return description

def search_class_image(class_name):
    wikipedia.set_lang("en")
    wikipedia.set_rate_limiting(True)
    img_url = ""

    try:
        page = wikipedia.page(class_name)
        if page:
            for img in page.images:
                if img.lower().endswith(('.jpg', '.jpeg', '.png', '.gif')):
                    img_url = img
                    break
    except Exception as e:
        print(f"Error fetching image for {class_name}: {e}")

    return img_url

def process_image(image):
    if models['yolo_model'] is None:
        return None, "YOLO model is not initialized.", "YOLO model is not initialized.", [], None
    
    try:
        if image is None:
            return None, "No image uploaded.", "No image uploaded.", [], None

        # Convert Gradio Image to OpenCV format
        image_np = np.array(image)
        if image_np.dtype != np.uint8:
            image_np = image_np.astype(np.uint8)

        if len(image_np.shape) != 3 or image_np.shape[2] != 3:
            return None, "Invalid image format. Please upload a RGB image.", "Invalid image format. Please upload a RGB image.", [], None

        image_cv = cv2.cvtColor(image_np, cv2.COLOR_RGB2BGR)

        # Store the original image before drawing bounding boxes
        original_image_cv = image_cv.copy()
        original_image_pil = Image.fromarray(cv2.cvtColor(original_image_cv, cv2.COLOR_BGR2RGB))

        # Perform YOLO prediction
        results = models['yolo_model'].predict(
            source=image_cv, conf=0.075)[0]  # Lowered the threshold

        bounding_boxes = []
        image_processed = image_cv.copy()

        if results.boxes is not None:
            for box in results.boxes:
                x1, y1, x2, y2 = map(int, box.xyxy[0].tolist())
                class_name = models['yolo_model'].names[int(box.cls)]
                confidence = box.conf.item() * 100  # Convert to percentage

                bounding_boxes.append({
                    "coords": (x1, y1, x2, y2),
                    "class_name": class_name,
                    "confidence": confidence
                })

                cv2.rectangle(image_processed, (x1, y1), (x2, y2), (0, 0, 255), 2)
                cv2.putText(image_processed, f'{class_name} {confidence:.2f}%',
                            (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX,
                            0.9, (0, 0, 255), 2)

        # Convert back to PIL Image
        processed_image = Image.fromarray(cv2.cvtColor(image_processed, cv2.COLOR_BGR2RGB))

        # Prepare detection info
        if bounding_boxes:
            detection_info = "\n".join(
                [f'{box["class_name"]}: {box["confidence"]:.2f}%' for box in bounding_boxes]
            )
        else:
            detection_info = "No detections found."

        # Prepare detection details as Markdown
        if bounding_boxes:
            details = ""
            for idx, box in enumerate(bounding_boxes):
                class_name = box['class_name']
                confidence = box['confidence']
                description = search_class_description(class_name)
                img_url = search_class_image(class_name)
                img_md = ""
                if img_url:
                    try:
                        headers = {
                            'User-Agent': 'MyApp/1.0 (https://example.com/contact; [email protected])'
                        }
                        response = requests.get(img_url, headers=headers, timeout=10)
                        img_data = response.content
                        img = Image.open(BytesIO(img_data)).convert("RGB")
                        img.thumbnail((400, 400))  # Resize for faster loading
                        buffered = BytesIO()
                        img.save(buffered, format="PNG")
                        img_str = base64.b64encode(buffered.getvalue()).decode()
                        img_md = f"![{class_name}](data:image/png;base64,{img_str})\n\n"
                    except Exception as e:
                        print(f"Error fetching image for {class_name}: {e}")
                details += f"### {idx+1}. {class_name} ({confidence:.2f}%)\n\n"
                if description:
                    details += f"{description}\n\n"
                if img_md:
                    details += f"{img_md}\n\n"
            detection_details_md = details
        else:
            detection_details_md = "No detections to show."

        return processed_image, detection_info, detection_details_md, bounding_boxes, original_image_pil
    except Exception as e:
        print(f"Error processing image: {e}")
        return None, f"Error processing image: {e}", f"Error processing image: {e}", [], None

def ask_eurybia(question, state):
    if not question.strip():
        return "Please enter a valid question.", state

    if not state['bounding_boxes']:
        return "No detected objects to ask about.", state

    # Combine descriptions of all detected objects as context
    context = ""
    for box in state['bounding_boxes']:
        description = search_class_description(box['class_name'])
        if description:
            context += description + "\n"

    if not context.strip():
        return "No sufficient context available to answer the question.", state

    try:
        if models['qa_pipeline'] is None:
            return "QA pipeline is not initialized.", state

        answer = models['qa_pipeline'](question=question, context=context)
        answer_text = answer['answer'].strip()
        if not answer_text:
            return "I couldn't find an answer to that question based on the detected objects.", state
        return answer_text, state
    except Exception as e:
        print(f"Error during question answering: {e}")
        return f"Error during question answering: {e}", state

def enhance_image(cropped_image_pil):
    if models['upscaler'] is None:
        return None, "Upscaling model is not initialized."
    
    try:
        input_image = cropped_image_pil.convert("RGB")
        img = np.array(input_image)

        # Run the model to enhance the image
        output, _ = models['upscaler'].enhance(img, outscale=4)

        enhanced_image = Image.fromarray(output)

        return enhanced_image, "Image enhanced successfully."
    except Exception as e:
        print(f"Error during image enhancement: {e}")
        return None, f"Error during image enhancement: {e}"

def run_depth_prediction(original_image):
    if models['depth_pipe'] is None:
        error_msg = models.get('depth_init_error', "Depth estimation model is not initialized.")
        return None, error_msg

    try:
        if original_image is None:
            return None, "No image uploaded for depth prediction."

        # Prepare the image
        input_image = original_image.convert("RGB")

        # Run the depth pipeline
        result = models['depth_pipe'](input_image)

        # Access the depth prediction
        depth_prediction = result.prediction  # Adjust based on sample code

        # Visualize the depth map
        vis_depth = models['depth_pipe'].image_processor.visualize_depth(depth_prediction)
        
        # Ensure vis_depth is a list and extract the first image
        if isinstance(vis_depth, list) and len(vis_depth) > 0:
            vis_depth_image = vis_depth[0]
        else:
            vis_depth_image = vis_depth  # Fallback if not a list

        return vis_depth_image, "Depth prediction completed."
    except Exception as e:
        print(f"Error during depth prediction: {e}")
        return None, f"Error during depth prediction: {e}"

# Gradio Interface Components
with gr.Blocks() as demo:
    gr.Markdown("# Eurybia Mini - Object Detection and Analysis Tool")

    with gr.Tab("Upload & Process"):
        with gr.Row():
            with gr.Column():
                image_input = gr.Image(type="pil", label="Upload Image")
                process_button = gr.Button("Process Image")
                clear_button = gr.Button("Clear")
            with gr.Column():
                processed_image = gr.Image(type="pil", label="Processed Image")
                detection_info = gr.Textbox(label="Detection Information", lines=10)

    with gr.Tab("Detection Details"):
        with gr.Accordion("Click to see detection details", open=False):
            detection_details_md = gr.Markdown("No detections to show.")

    with gr.Tab("Ask Eurybia"):
        with gr.Row():
            with gr.Column():
                question_input = gr.Textbox(label="Ask a question about the detected objects")
                ask_button = gr.Button("Ask Eurybia")
            with gr.Column():
                answer_output = gr.Markdown(label="Eurybia's Answer")

    with gr.Tab("Depth Estimation"):
        with gr.Row():
            with gr.Column():
                depth_button = gr.Button("Run Depth Prediction")
            with gr.Column():
                depth_output = gr.Image(type="pil", label="Depth Map")
                depth_status = gr.Textbox(label="Status", lines=2)
        
        # Display error message if depth estimation model failed to initialize
        if models.get('depth_init_error'):
            gr.Markdown(f"**Depth Estimation Initialization Error:** {models['depth_init_error']}")

    with gr.Tab("Enhance Detected Objects"):
        if models['yolo_model'] is not None and models['upscaler'] is not None:
            with gr.Row():
                detected_objects = gr.Dropdown(choices=[], label="Select Detected Object", interactive=True)
                enhance_btn = gr.Button("Enhance Image")
            with gr.Column():
                enhanced_image = gr.Image(type="pil", label="Enhanced Image")
                enhance_status = gr.Textbox(label="Status", lines=2)
        else:
            gr.Markdown("**Warning:** YOLO model or Upscaling model is not initialized. Image enhancement functionality will be unavailable.")

    with gr.Tab("Credits"):
        gr.Markdown("""
# Credits and Licensing Information

This project utilizes various open-source libraries, tools, pretrained models, and datasets. Below is the list of components used and their respective credits/licenses:

## Libraries
- **Python** - Python Software Foundation License (PSF License)
- **Gradio** - Licensed under the Apache License 2.0
- **Torch (PyTorch)** - Licensed under the BSD 3-Clause License
- **OpenCV (cv2)** - Licensed under the Apache License 2.0
- **NumPy** - Licensed under the BSD License
- **Pillow (PIL)** - Licensed under the HPND License
- **Requests** - Licensed under the Apache License 2.0
- **Wikipedia API** - Licensed under the MIT License
- **Transformers** - Licensed under the Apache License 2.0
- **Diffusers** - Licensed under the Apache License 2.0
- **Real-ESRGAN** - Licensed under the MIT License
- **BasicSR** - Licensed under the Apache License 2.0
- **Ultralytics YOLO** - Licensed under the GPL-3.0 License

## Pretrained Models
- **deepset/roberta-base-squad2 (RoBERTa)** - Model provided by Hugging Face under the Apache License 2.0.
- **google/gemma-2-2b-it** - Model provided by Hugging Face under the Apache License 2.0.
- **prs-eth/marigold-depth-lcm-v1-0** - Licensed under the Apache License 2.0.
- **Real-ESRGAN model weights (RealESRGAN_x4plus.pth)** - Distributed under the MIT License.
- **FathomNet MBARI 315K YOLOv8 Model**:
  - **Dataset**: Sourced from [FathomNet](https://fathomnet.org).
  - **Model**: Derived from MBARI’s curated dataset of 315,000 marine annotations.
  - **License**: Dataset and models adhere to MBARI’s Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).

## Datasets
- **FathomNet MBARI Dataset**:
  - A large-scale dataset for marine biodiversity image annotations.
  - All content adheres to the [CC BY-NC 4.0 License](https://creativecommons.org/licenses/by-nc/4.0/).

## Acknowledgments
- **Ultralytics YOLO**: For the YOLOv8 architecture used for object detection.
- **FathomNet and MBARI**: For providing the marine dataset and annotations that support object detection in underwater imagery.
- **Gradio**: For providing an intuitive interface for machine learning applications.
- **Hugging Face**: For pretrained models and pipelines (e.g., Transformers, Diffusers).
- **Real-ESRGAN**: For image enhancement and upscaling models.
- **Wikipedia API**: For fetching object descriptions and images.
""")

    # Hidden state to store bounding boxes, original and processed images
    state = gr.State({"bounding_boxes": [], "last_image": None, "original_image": None})

    # Event Handlers
    def on_process_image(image, state):
        processed_img, info, details, bounding_boxes, original_image_pil = process_image(image)
        if processed_img is not None:
            # Update the state with new bounding boxes and images
            state['bounding_boxes'] = bounding_boxes
            state['last_image'] = processed_img
            state['original_image'] = original_image_pil
            # Update the dropdown choices for detected objects
            choices = [f"{idx+1}. {box['class_name']} ({box['confidence']:.2f}%)" for idx, box in enumerate(bounding_boxes)]
        else:
            choices = []
        return processed_img, info, details, gr.update(choices=choices), state

    process_button.click(
        on_process_image,
        inputs=[image_input, state],
        outputs=[processed_image, detection_info, detection_details_md, detected_objects, state]
    )

    def on_clear(state):
        state = {"bounding_boxes": [], "last_image": None, "original_image": None}
        return None, "No detections found.", "No detections to show.", gr.update(choices=[]), state

    clear_button.click(
        on_clear,
        inputs=state,
        outputs=[processed_image, detection_info, detection_details_md, detected_objects, state]
    )

    def on_ask_eurybia(question, state):
        answer, state = ask_eurybia(question, state)
        return answer, state

    ask_button.click(
        on_ask_eurybia,
        inputs=[question_input, state],
        outputs=[answer_output, state]
    )

    def on_depth_prediction(state):
        original_image = state.get('original_image')
        depth_img, status = run_depth_prediction(original_image)
        return depth_img, status

    depth_button.click(
        on_depth_prediction,
        inputs=state,
        outputs=[depth_output, depth_status]
    )

    def on_enhance_image(selected_object, state):
        if not selected_object:
            return None, "No object selected.", state

        try:
            idx = int(selected_object.split('.')[0]) - 1
            box = state['bounding_boxes'][idx]
            class_name = box['class_name']
            x1, y1, x2, y2 = box['coords']

            if not state.get('last_image'):
                return None, "Processed image is not available.", state

            # Ensure processed_image is stored in state
            processed_img_pil = state['last_image']
            if not isinstance(processed_img_pil, Image.Image):
                return None, "Processed image is in an unsupported format.", state

            # Convert processed_image to OpenCV format with checks
            processed_img_cv = np.array(processed_img_pil)
            if processed_img_cv.dtype != np.uint8:
                processed_img_cv = processed_img_cv.astype(np.uint8)

            if len(processed_img_cv.shape) != 3 or processed_img_cv.shape[2] != 3:
                return None, "Invalid processed image format.", state

            processed_img_cv = cv2.cvtColor(processed_img_cv, cv2.COLOR_RGB2BGR)

            # Crop the detected object from the processed image
            cropped_img_cv = processed_img_cv[y1:y2, x1:x2]
            if cropped_img_cv.size == 0:
                return None, "Cropped image is empty.", state

            cropped_img_pil = Image.fromarray(cv2.cvtColor(cropped_img_cv, cv2.COLOR_BGR2RGB))

            # Enhance the cropped image
            enhanced_img, status = enhance_image(cropped_img_pil)
            return enhanced_img, status, state
        except Exception as e:
            return None, f"Error: {e}", state

    if models['yolo_model'] is not None and models['upscaler'] is not None:
        enhance_btn.click(
            on_enhance_image,
            inputs=[detected_objects, state],
            outputs=[enhanced_image, enhance_status, state]
        )

    # Optional: Add a note if the depth model isn't initialized
    if models['depth_pipe'] is None and not models.get('depth_init_error'):
        gr.Markdown("**Warning:** Depth estimation model is not initialized. Depth prediction functionality will be unavailable.")

    # Optional: Add a note if the upscaler isn't initialized
    if models['upscaler'] is None:
        gr.Markdown("**Warning:** Upscaling model is not initialized. Image enhancement functionality will be unavailable.")

# Launch the Gradio app
demo.launch()