Spaces:
Runtime error
Runtime error
Delete EurybiaMini3.0Gradio.app
Browse files- EurybiaMini3.0Gradio.app +0 -536
EurybiaMini3.0Gradio.app
DELETED
@@ -1,536 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import glob
|
3 |
-
import time
|
4 |
-
import threading
|
5 |
-
import requests
|
6 |
-
import wikipedia
|
7 |
-
import torch
|
8 |
-
import cv2
|
9 |
-
import numpy as np
|
10 |
-
from io import BytesIO
|
11 |
-
from PIL import Image
|
12 |
-
import base64 # Added import
|
13 |
-
|
14 |
-
import gradio as gr
|
15 |
-
from ultralytics import YOLO
|
16 |
-
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
|
17 |
-
from diffusers import MarigoldDepthPipeline # Updated import for depth model
|
18 |
-
from realesrgan import RealESRGANer
|
19 |
-
from basicsr.archs.rrdbnet_arch import RRDBNet
|
20 |
-
|
21 |
-
# Set environment variable for PyTorch MPS fallback before importing torch
|
22 |
-
os.environ['PYTORCH_ENABLE_MPS_FALLBACK'] = '1'
|
23 |
-
|
24 |
-
# Initialize Models
|
25 |
-
def initialize_models():
|
26 |
-
models = {}
|
27 |
-
|
28 |
-
# Device detection
|
29 |
-
if torch.cuda.is_available():
|
30 |
-
device = 'cuda'
|
31 |
-
elif torch.backends.mps.is_available():
|
32 |
-
device = 'mps'
|
33 |
-
else:
|
34 |
-
device = 'cpu'
|
35 |
-
models['device'] = device
|
36 |
-
|
37 |
-
print(f"Using device: {device}")
|
38 |
-
|
39 |
-
# Initialize the RoBERTa model for question answering
|
40 |
-
try:
|
41 |
-
models['qa_pipeline'] = pipeline(
|
42 |
-
"question-answering", model="deepset/roberta-base-squad2", device=0 if device == 'cuda' else -1)
|
43 |
-
print("RoBERTa QA pipeline initialized.")
|
44 |
-
except Exception as e:
|
45 |
-
print(f"Error initializing the RoBERTa model: {e}")
|
46 |
-
models['qa_pipeline'] = None
|
47 |
-
|
48 |
-
# Initialize the Gemma model
|
49 |
-
try:
|
50 |
-
models['gemma_tokenizer'] = AutoTokenizer.from_pretrained("google/gemma-2-2b-it")
|
51 |
-
models['gemma_model'] = AutoModelForCausalLM.from_pretrained(
|
52 |
-
"google/gemma-2-2b-it",
|
53 |
-
device_map="auto",
|
54 |
-
torch_dtype=torch.bfloat16 if device == 'cuda' else torch.float32
|
55 |
-
)
|
56 |
-
print("Gemma model initialized.")
|
57 |
-
except Exception as e:
|
58 |
-
print(f"Error initializing the Gemma model: {e}")
|
59 |
-
models['gemma_model'] = None
|
60 |
-
|
61 |
-
# Initialize the depth estimation model using MarigoldDepthPipeline exactly as per your sample
|
62 |
-
try:
|
63 |
-
if device == 'cuda':
|
64 |
-
models['depth_pipe'] = MarigoldDepthPipeline.from_pretrained(
|
65 |
-
"prs-eth/marigold-depth-lcm-v1-0",
|
66 |
-
variant="fp16",
|
67 |
-
torch_dtype=torch.float16
|
68 |
-
).to('cuda')
|
69 |
-
else:
|
70 |
-
# For CPU or MPS devices, keep on 'cpu' to avoid unsupported operators
|
71 |
-
models['depth_pipe'] = MarigoldDepthPipeline.from_pretrained(
|
72 |
-
"prs-eth/marigold-depth-lcm-v1-0",
|
73 |
-
torch_dtype=torch.float32
|
74 |
-
).to('cpu')
|
75 |
-
print("Depth estimation model initialized.")
|
76 |
-
except Exception as e:
|
77 |
-
error_message = f"Error initializing the depth estimation model: {e}"
|
78 |
-
print(error_message)
|
79 |
-
models['depth_pipe'] = None
|
80 |
-
models['depth_init_error'] = error_message # Store the error message
|
81 |
-
|
82 |
-
# Initialize the upscaling model
|
83 |
-
try:
|
84 |
-
upscaler_model_path = 'weights/RealESRGAN_x4plus.pth' # Ensure this path is correct
|
85 |
-
if not os.path.exists(upscaler_model_path):
|
86 |
-
print(f"Upscaling model weights not found at {upscaler_model_path}. Please download them.")
|
87 |
-
models['upscaler'] = None
|
88 |
-
else:
|
89 |
-
# Define the model architecture
|
90 |
-
model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64,
|
91 |
-
num_block=23, num_grow_ch=32, scale=4)
|
92 |
-
|
93 |
-
# Initialize RealESRGANer
|
94 |
-
models['upscaler'] = RealESRGANer(
|
95 |
-
scale=4,
|
96 |
-
model_path=upscaler_model_path,
|
97 |
-
model=model,
|
98 |
-
pre_pad=0,
|
99 |
-
half=(device == 'cuda'),
|
100 |
-
device=device
|
101 |
-
)
|
102 |
-
print("Real-ESRGAN upscaler initialized.")
|
103 |
-
except Exception as e:
|
104 |
-
print(f"Error initializing the upscaling model: {e}")
|
105 |
-
models['upscaler'] = None
|
106 |
-
|
107 |
-
# Initialize YOLO model
|
108 |
-
try:
|
109 |
-
source_weights_path = "/Users/David/Downloads/WheelOfFortuneLab-DavidDriscoll/Eurybia1.3/mbari_315k_yolov8.pt"
|
110 |
-
if not os.path.exists(source_weights_path):
|
111 |
-
print(f"YOLO weights not found at {source_weights_path}. Please download them.")
|
112 |
-
models['yolo_model'] = None
|
113 |
-
else:
|
114 |
-
models['yolo_model'] = YOLO(source_weights_path)
|
115 |
-
print("YOLO model initialized.")
|
116 |
-
except Exception as e:
|
117 |
-
print(f"Error initializing YOLO model: {e}")
|
118 |
-
models['yolo_model'] = None
|
119 |
-
|
120 |
-
return models
|
121 |
-
|
122 |
-
models = initialize_models()
|
123 |
-
|
124 |
-
# Utility Functions
|
125 |
-
def search_class_description(class_name):
|
126 |
-
wikipedia.set_lang("en")
|
127 |
-
wikipedia.set_rate_limiting(True)
|
128 |
-
description = ""
|
129 |
-
|
130 |
-
try:
|
131 |
-
page = wikipedia.page(class_name)
|
132 |
-
if page:
|
133 |
-
description = page.content[:5000] # Get more content
|
134 |
-
except Exception as e:
|
135 |
-
print(f"Error fetching description for {class_name}: {e}")
|
136 |
-
|
137 |
-
return description
|
138 |
-
|
139 |
-
def search_class_image(class_name):
|
140 |
-
wikipedia.set_lang("en")
|
141 |
-
wikipedia.set_rate_limiting(True)
|
142 |
-
img_url = ""
|
143 |
-
|
144 |
-
try:
|
145 |
-
page = wikipedia.page(class_name)
|
146 |
-
if page:
|
147 |
-
for img in page.images:
|
148 |
-
if img.lower().endswith(('.jpg', '.jpeg', '.png', '.gif')):
|
149 |
-
img_url = img
|
150 |
-
break
|
151 |
-
except Exception as e:
|
152 |
-
print(f"Error fetching image for {class_name}: {e}")
|
153 |
-
|
154 |
-
return img_url
|
155 |
-
|
156 |
-
def process_image(image):
|
157 |
-
if models['yolo_model'] is None:
|
158 |
-
return None, "YOLO model is not initialized.", "YOLO model is not initialized.", [], None
|
159 |
-
|
160 |
-
try:
|
161 |
-
if image is None:
|
162 |
-
return None, "No image uploaded.", "No image uploaded.", [], None
|
163 |
-
|
164 |
-
# Convert Gradio Image to OpenCV format
|
165 |
-
image_np = np.array(image)
|
166 |
-
if image_np.dtype != np.uint8:
|
167 |
-
image_np = image_np.astype(np.uint8)
|
168 |
-
|
169 |
-
if len(image_np.shape) != 3 or image_np.shape[2] != 3:
|
170 |
-
return None, "Invalid image format. Please upload a RGB image.", "Invalid image format. Please upload a RGB image.", [], None
|
171 |
-
|
172 |
-
image_cv = cv2.cvtColor(image_np, cv2.COLOR_RGB2BGR)
|
173 |
-
|
174 |
-
# Store the original image before drawing bounding boxes
|
175 |
-
original_image_cv = image_cv.copy()
|
176 |
-
original_image_pil = Image.fromarray(cv2.cvtColor(original_image_cv, cv2.COLOR_BGR2RGB))
|
177 |
-
|
178 |
-
# Perform YOLO prediction
|
179 |
-
results = models['yolo_model'].predict(
|
180 |
-
source=image_cv, conf=0.075)[0] # Lowered the threshold
|
181 |
-
|
182 |
-
bounding_boxes = []
|
183 |
-
image_processed = image_cv.copy()
|
184 |
-
|
185 |
-
if results.boxes is not None:
|
186 |
-
for box in results.boxes:
|
187 |
-
x1, y1, x2, y2 = map(int, box.xyxy[0].tolist())
|
188 |
-
class_name = models['yolo_model'].names[int(box.cls)]
|
189 |
-
confidence = box.conf.item() * 100 # Convert to percentage
|
190 |
-
|
191 |
-
bounding_boxes.append({
|
192 |
-
"coords": (x1, y1, x2, y2),
|
193 |
-
"class_name": class_name,
|
194 |
-
"confidence": confidence
|
195 |
-
})
|
196 |
-
|
197 |
-
cv2.rectangle(image_processed, (x1, y1), (x2, y2), (0, 0, 255), 2)
|
198 |
-
cv2.putText(image_processed, f'{class_name} {confidence:.2f}%',
|
199 |
-
(x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX,
|
200 |
-
0.9, (0, 0, 255), 2)
|
201 |
-
|
202 |
-
# Convert back to PIL Image
|
203 |
-
processed_image = Image.fromarray(cv2.cvtColor(image_processed, cv2.COLOR_BGR2RGB))
|
204 |
-
|
205 |
-
# Prepare detection info
|
206 |
-
if bounding_boxes:
|
207 |
-
detection_info = "\n".join(
|
208 |
-
[f'{box["class_name"]}: {box["confidence"]:.2f}%' for box in bounding_boxes]
|
209 |
-
)
|
210 |
-
else:
|
211 |
-
detection_info = "No detections found."
|
212 |
-
|
213 |
-
# Prepare detection details as Markdown
|
214 |
-
if bounding_boxes:
|
215 |
-
details = ""
|
216 |
-
for idx, box in enumerate(bounding_boxes):
|
217 |
-
class_name = box['class_name']
|
218 |
-
confidence = box['confidence']
|
219 |
-
description = search_class_description(class_name)
|
220 |
-
img_url = search_class_image(class_name)
|
221 |
-
img_md = ""
|
222 |
-
if img_url:
|
223 |
-
try:
|
224 |
-
headers = {
|
225 |
-
'User-Agent': 'MyApp/1.0 (https://example.com/contact; [email protected])'
|
226 |
-
}
|
227 |
-
response = requests.get(img_url, headers=headers, timeout=10)
|
228 |
-
img_data = response.content
|
229 |
-
img = Image.open(BytesIO(img_data)).convert("RGB")
|
230 |
-
img.thumbnail((400, 400)) # Resize for faster loading
|
231 |
-
buffered = BytesIO()
|
232 |
-
img.save(buffered, format="PNG")
|
233 |
-
img_str = base64.b64encode(buffered.getvalue()).decode()
|
234 |
-
img_md = f"\n\n"
|
235 |
-
except Exception as e:
|
236 |
-
print(f"Error fetching image for {class_name}: {e}")
|
237 |
-
details += f"### {idx+1}. {class_name} ({confidence:.2f}%)\n\n"
|
238 |
-
if description:
|
239 |
-
details += f"{description}\n\n"
|
240 |
-
if img_md:
|
241 |
-
details += f"{img_md}\n\n"
|
242 |
-
detection_details_md = details
|
243 |
-
else:
|
244 |
-
detection_details_md = "No detections to show."
|
245 |
-
|
246 |
-
return processed_image, detection_info, detection_details_md, bounding_boxes, original_image_pil
|
247 |
-
except Exception as e:
|
248 |
-
print(f"Error processing image: {e}")
|
249 |
-
return None, f"Error processing image: {e}", f"Error processing image: {e}", [], None
|
250 |
-
|
251 |
-
def ask_eurybia(question, state):
|
252 |
-
if not question.strip():
|
253 |
-
return "Please enter a valid question.", state
|
254 |
-
|
255 |
-
if not state['bounding_boxes']:
|
256 |
-
return "No detected objects to ask about.", state
|
257 |
-
|
258 |
-
# Combine descriptions of all detected objects as context
|
259 |
-
context = ""
|
260 |
-
for box in state['bounding_boxes']:
|
261 |
-
description = search_class_description(box['class_name'])
|
262 |
-
if description:
|
263 |
-
context += description + "\n"
|
264 |
-
|
265 |
-
if not context.strip():
|
266 |
-
return "No sufficient context available to answer the question.", state
|
267 |
-
|
268 |
-
try:
|
269 |
-
if models['qa_pipeline'] is None:
|
270 |
-
return "QA pipeline is not initialized.", state
|
271 |
-
|
272 |
-
answer = models['qa_pipeline'](question=question, context=context)
|
273 |
-
answer_text = answer['answer'].strip()
|
274 |
-
if not answer_text:
|
275 |
-
return "I couldn't find an answer to that question based on the detected objects.", state
|
276 |
-
return answer_text, state
|
277 |
-
except Exception as e:
|
278 |
-
print(f"Error during question answering: {e}")
|
279 |
-
return f"Error during question answering: {e}", state
|
280 |
-
|
281 |
-
def enhance_image(cropped_image_pil):
|
282 |
-
if models['upscaler'] is None:
|
283 |
-
return None, "Upscaling model is not initialized."
|
284 |
-
|
285 |
-
try:
|
286 |
-
input_image = cropped_image_pil.convert("RGB")
|
287 |
-
img = np.array(input_image)
|
288 |
-
|
289 |
-
# Run the model to enhance the image
|
290 |
-
output, _ = models['upscaler'].enhance(img, outscale=4)
|
291 |
-
|
292 |
-
enhanced_image = Image.fromarray(output)
|
293 |
-
|
294 |
-
return enhanced_image, "Image enhanced successfully."
|
295 |
-
except Exception as e:
|
296 |
-
print(f"Error during image enhancement: {e}")
|
297 |
-
return None, f"Error during image enhancement: {e}"
|
298 |
-
|
299 |
-
def run_depth_prediction(original_image):
|
300 |
-
if models['depth_pipe'] is None:
|
301 |
-
error_msg = models.get('depth_init_error', "Depth estimation model is not initialized.")
|
302 |
-
return None, error_msg
|
303 |
-
|
304 |
-
try:
|
305 |
-
if original_image is None:
|
306 |
-
return None, "No image uploaded for depth prediction."
|
307 |
-
|
308 |
-
# Prepare the image
|
309 |
-
input_image = original_image.convert("RGB")
|
310 |
-
|
311 |
-
# Run the depth pipeline
|
312 |
-
result = models['depth_pipe'](input_image)
|
313 |
-
|
314 |
-
# Access the depth prediction
|
315 |
-
depth_prediction = result.prediction # Adjust based on sample code
|
316 |
-
|
317 |
-
# Visualize the depth map
|
318 |
-
vis_depth = models['depth_pipe'].image_processor.visualize_depth(depth_prediction)
|
319 |
-
|
320 |
-
# Ensure vis_depth is a list and extract the first image
|
321 |
-
if isinstance(vis_depth, list) and len(vis_depth) > 0:
|
322 |
-
vis_depth_image = vis_depth[0]
|
323 |
-
else:
|
324 |
-
vis_depth_image = vis_depth # Fallback if not a list
|
325 |
-
|
326 |
-
return vis_depth_image, "Depth prediction completed."
|
327 |
-
except Exception as e:
|
328 |
-
print(f"Error during depth prediction: {e}")
|
329 |
-
return None, f"Error during depth prediction: {e}"
|
330 |
-
|
331 |
-
# Gradio Interface Components
|
332 |
-
with gr.Blocks() as demo:
|
333 |
-
gr.Markdown("# Eurybia Mini - Object Detection and Analysis Tool")
|
334 |
-
|
335 |
-
with gr.Tab("Upload & Process"):
|
336 |
-
with gr.Row():
|
337 |
-
with gr.Column():
|
338 |
-
image_input = gr.Image(type="pil", label="Upload Image")
|
339 |
-
process_button = gr.Button("Process Image")
|
340 |
-
clear_button = gr.Button("Clear")
|
341 |
-
with gr.Column():
|
342 |
-
processed_image = gr.Image(type="pil", label="Processed Image")
|
343 |
-
detection_info = gr.Textbox(label="Detection Information", lines=10)
|
344 |
-
|
345 |
-
with gr.Tab("Detection Details"):
|
346 |
-
with gr.Accordion("Click to see detection details", open=False):
|
347 |
-
detection_details_md = gr.Markdown("No detections to show.")
|
348 |
-
|
349 |
-
with gr.Tab("Ask Eurybia"):
|
350 |
-
with gr.Row():
|
351 |
-
with gr.Column():
|
352 |
-
question_input = gr.Textbox(label="Ask a question about the detected objects")
|
353 |
-
ask_button = gr.Button("Ask Eurybia")
|
354 |
-
with gr.Column():
|
355 |
-
answer_output = gr.Markdown(label="Eurybia's Answer")
|
356 |
-
|
357 |
-
with gr.Tab("Depth Estimation"):
|
358 |
-
with gr.Row():
|
359 |
-
with gr.Column():
|
360 |
-
depth_button = gr.Button("Run Depth Prediction")
|
361 |
-
with gr.Column():
|
362 |
-
depth_output = gr.Image(type="pil", label="Depth Map")
|
363 |
-
depth_status = gr.Textbox(label="Status", lines=2)
|
364 |
-
|
365 |
-
# Display error message if depth estimation model failed to initialize
|
366 |
-
if models.get('depth_init_error'):
|
367 |
-
gr.Markdown(f"**Depth Estimation Initialization Error:** {models['depth_init_error']}")
|
368 |
-
|
369 |
-
with gr.Tab("Enhance Detected Objects"):
|
370 |
-
if models['yolo_model'] is not None and models['upscaler'] is not None:
|
371 |
-
with gr.Row():
|
372 |
-
detected_objects = gr.Dropdown(choices=[], label="Select Detected Object", interactive=True)
|
373 |
-
enhance_btn = gr.Button("Enhance Image")
|
374 |
-
with gr.Column():
|
375 |
-
enhanced_image = gr.Image(type="pil", label="Enhanced Image")
|
376 |
-
enhance_status = gr.Textbox(label="Status", lines=2)
|
377 |
-
else:
|
378 |
-
gr.Markdown("**Warning:** YOLO model or Upscaling model is not initialized. Image enhancement functionality will be unavailable.")
|
379 |
-
|
380 |
-
with gr.Tab("Credits"):
|
381 |
-
gr.Markdown("""
|
382 |
-
# Credits and Licensing Information
|
383 |
-
|
384 |
-
This project utilizes various open-source libraries, tools, pretrained models, and datasets. Below is the list of components used and their respective credits/licenses:
|
385 |
-
|
386 |
-
## Libraries
|
387 |
-
- **Python** - Python Software Foundation License (PSF License)
|
388 |
-
- **Gradio** - Licensed under the Apache License 2.0
|
389 |
-
- **Torch (PyTorch)** - Licensed under the BSD 3-Clause License
|
390 |
-
- **OpenCV (cv2)** - Licensed under the Apache License 2.0
|
391 |
-
- **NumPy** - Licensed under the BSD License
|
392 |
-
- **Pillow (PIL)** - Licensed under the HPND License
|
393 |
-
- **Requests** - Licensed under the Apache License 2.0
|
394 |
-
- **Wikipedia API** - Licensed under the MIT License
|
395 |
-
- **Transformers** - Licensed under the Apache License 2.0
|
396 |
-
- **Diffusers** - Licensed under the Apache License 2.0
|
397 |
-
- **Real-ESRGAN** - Licensed under the MIT License
|
398 |
-
- **BasicSR** - Licensed under the Apache License 2.0
|
399 |
-
- **Ultralytics YOLO** - Licensed under the GPL-3.0 License
|
400 |
-
|
401 |
-
## Pretrained Models
|
402 |
-
- **deepset/roberta-base-squad2 (RoBERTa)** - Model provided by Hugging Face under the Apache License 2.0.
|
403 |
-
- **google/gemma-2-2b-it** - Model provided by Hugging Face under the Apache License 2.0.
|
404 |
-
- **prs-eth/marigold-depth-lcm-v1-0** - Licensed under the Apache License 2.0.
|
405 |
-
- **Real-ESRGAN model weights (RealESRGAN_x4plus.pth)** - Distributed under the MIT License.
|
406 |
-
- **FathomNet MBARI 315K YOLOv8 Model**:
|
407 |
-
- **Dataset**: Sourced from [FathomNet](https://fathomnet.org).
|
408 |
-
- **Model**: Derived from MBARI’s curated dataset of 315,000 marine annotations.
|
409 |
-
- **License**: Dataset and models adhere to MBARI’s Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).
|
410 |
-
|
411 |
-
## Datasets
|
412 |
-
- **FathomNet MBARI Dataset**:
|
413 |
-
- A large-scale dataset for marine biodiversity image annotations.
|
414 |
-
- All content adheres to the [CC BY-NC 4.0 License](https://creativecommons.org/licenses/by-nc/4.0/).
|
415 |
-
|
416 |
-
## Acknowledgments
|
417 |
-
- **Ultralytics YOLO**: For the YOLOv8 architecture used for object detection.
|
418 |
-
- **FathomNet and MBARI**: For providing the marine dataset and annotations that support object detection in underwater imagery.
|
419 |
-
- **Gradio**: For providing an intuitive interface for machine learning applications.
|
420 |
-
- **Hugging Face**: For pretrained models and pipelines (e.g., Transformers, Diffusers).
|
421 |
-
- **Real-ESRGAN**: For image enhancement and upscaling models.
|
422 |
-
- **Wikipedia API**: For fetching object descriptions and images.
|
423 |
-
""")
|
424 |
-
|
425 |
-
# Hidden state to store bounding boxes, original and processed images
|
426 |
-
state = gr.State({"bounding_boxes": [], "last_image": None, "original_image": None})
|
427 |
-
|
428 |
-
# Event Handlers
|
429 |
-
def on_process_image(image, state):
|
430 |
-
processed_img, info, details, bounding_boxes, original_image_pil = process_image(image)
|
431 |
-
if processed_img is not None:
|
432 |
-
# Update the state with new bounding boxes and images
|
433 |
-
state['bounding_boxes'] = bounding_boxes
|
434 |
-
state['last_image'] = processed_img
|
435 |
-
state['original_image'] = original_image_pil
|
436 |
-
# Update the dropdown choices for detected objects
|
437 |
-
choices = [f"{idx+1}. {box['class_name']} ({box['confidence']:.2f}%)" for idx, box in enumerate(bounding_boxes)]
|
438 |
-
else:
|
439 |
-
choices = []
|
440 |
-
return processed_img, info, details, gr.update(choices=choices), state
|
441 |
-
|
442 |
-
process_button.click(
|
443 |
-
on_process_image,
|
444 |
-
inputs=[image_input, state],
|
445 |
-
outputs=[processed_image, detection_info, detection_details_md, detected_objects, state]
|
446 |
-
)
|
447 |
-
|
448 |
-
def on_clear(state):
|
449 |
-
state = {"bounding_boxes": [], "last_image": None, "original_image": None}
|
450 |
-
return None, "No detections found.", "No detections to show.", gr.update(choices=[]), state
|
451 |
-
|
452 |
-
clear_button.click(
|
453 |
-
on_clear,
|
454 |
-
inputs=state,
|
455 |
-
outputs=[processed_image, detection_info, detection_details_md, detected_objects, state]
|
456 |
-
)
|
457 |
-
|
458 |
-
def on_ask_eurybia(question, state):
|
459 |
-
answer, state = ask_eurybia(question, state)
|
460 |
-
return answer, state
|
461 |
-
|
462 |
-
ask_button.click(
|
463 |
-
on_ask_eurybia,
|
464 |
-
inputs=[question_input, state],
|
465 |
-
outputs=[answer_output, state]
|
466 |
-
)
|
467 |
-
|
468 |
-
def on_depth_prediction(state):
|
469 |
-
original_image = state.get('original_image')
|
470 |
-
depth_img, status = run_depth_prediction(original_image)
|
471 |
-
return depth_img, status
|
472 |
-
|
473 |
-
depth_button.click(
|
474 |
-
on_depth_prediction,
|
475 |
-
inputs=state,
|
476 |
-
outputs=[depth_output, depth_status]
|
477 |
-
)
|
478 |
-
|
479 |
-
def on_enhance_image(selected_object, state):
|
480 |
-
if not selected_object:
|
481 |
-
return None, "No object selected.", state
|
482 |
-
|
483 |
-
try:
|
484 |
-
idx = int(selected_object.split('.')[0]) - 1
|
485 |
-
box = state['bounding_boxes'][idx]
|
486 |
-
class_name = box['class_name']
|
487 |
-
x1, y1, x2, y2 = box['coords']
|
488 |
-
|
489 |
-
if not state.get('last_image'):
|
490 |
-
return None, "Processed image is not available.", state
|
491 |
-
|
492 |
-
# Ensure processed_image is stored in state
|
493 |
-
processed_img_pil = state['last_image']
|
494 |
-
if not isinstance(processed_img_pil, Image.Image):
|
495 |
-
return None, "Processed image is in an unsupported format.", state
|
496 |
-
|
497 |
-
# Convert processed_image to OpenCV format with checks
|
498 |
-
processed_img_cv = np.array(processed_img_pil)
|
499 |
-
if processed_img_cv.dtype != np.uint8:
|
500 |
-
processed_img_cv = processed_img_cv.astype(np.uint8)
|
501 |
-
|
502 |
-
if len(processed_img_cv.shape) != 3 or processed_img_cv.shape[2] != 3:
|
503 |
-
return None, "Invalid processed image format.", state
|
504 |
-
|
505 |
-
processed_img_cv = cv2.cvtColor(processed_img_cv, cv2.COLOR_RGB2BGR)
|
506 |
-
|
507 |
-
# Crop the detected object from the processed image
|
508 |
-
cropped_img_cv = processed_img_cv[y1:y2, x1:x2]
|
509 |
-
if cropped_img_cv.size == 0:
|
510 |
-
return None, "Cropped image is empty.", state
|
511 |
-
|
512 |
-
cropped_img_pil = Image.fromarray(cv2.cvtColor(cropped_img_cv, cv2.COLOR_BGR2RGB))
|
513 |
-
|
514 |
-
# Enhance the cropped image
|
515 |
-
enhanced_img, status = enhance_image(cropped_img_pil)
|
516 |
-
return enhanced_img, status, state
|
517 |
-
except Exception as e:
|
518 |
-
return None, f"Error: {e}", state
|
519 |
-
|
520 |
-
if models['yolo_model'] is not None and models['upscaler'] is not None:
|
521 |
-
enhance_btn.click(
|
522 |
-
on_enhance_image,
|
523 |
-
inputs=[detected_objects, state],
|
524 |
-
outputs=[enhanced_image, enhance_status, state]
|
525 |
-
)
|
526 |
-
|
527 |
-
# Optional: Add a note if the depth model isn't initialized
|
528 |
-
if models['depth_pipe'] is None and not models.get('depth_init_error'):
|
529 |
-
gr.Markdown("**Warning:** Depth estimation model is not initialized. Depth prediction functionality will be unavailable.")
|
530 |
-
|
531 |
-
# Optional: Add a note if the upscaler isn't initialized
|
532 |
-
if models['upscaler'] is None:
|
533 |
-
gr.Markdown("**Warning:** Upscaling model is not initialized. Image enhancement functionality will be unavailable.")
|
534 |
-
|
535 |
-
# Launch the Gradio app
|
536 |
-
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|