David Driscoll commited on
Commit
d539f74
·
1 Parent(s): 568b799
Files changed (1) hide show
  1. app.py +28 -44
app.py CHANGED
@@ -3,7 +3,7 @@ import mediapipe as mp
3
  import numpy as np
4
  import gradio as gr
5
 
6
- # Initialize MediaPipe Pose.
7
  mp_pose = mp.solutions.pose
8
  pose = mp_pose.Pose(
9
  static_image_mode=False,
@@ -13,7 +13,7 @@ pose = mp_pose.Pose(
13
  min_tracking_confidence=0.5
14
  )
15
 
16
- # Initialize MediaPipe Face Mesh.
17
  mp_face_mesh = mp.solutions.face_mesh
18
  face_mesh = mp_face_mesh.FaceMesh(
19
  static_image_mode=False,
@@ -25,96 +25,80 @@ face_mesh = mp_face_mesh.FaceMesh(
25
 
26
  def process_frame(image):
27
  """
28
- Processes an input image (from the webcam) by:
29
- 1. Converting from RGB (Gradio default) to BGR for OpenCV.
30
  2. Flipping the frame for a mirror view.
31
  3. Creating a black background.
32
- 4. Using MediaPipe Pose to draw body landmarks (excluding facial parts) and compute the shoulder center.
33
- 5. Using MediaPipe Face Mesh to draw the full facial mesh and extract the chin point.
34
- 6. Drawing a neck line from the shoulder center to the chin.
35
- 7. Converting the result back to RGB for display.
36
  """
37
- # Convert the input image from RGB (Gradio default) to BGR.
38
  frame = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
39
-
40
- # Flip the frame horizontally for a mirror view.
41
  frame = cv2.flip(frame, 1)
42
-
43
- # Create a black background image of the same size.
44
  output = np.zeros_like(frame)
45
-
46
- # Convert frame to RGB for MediaPipe processing.
47
  rgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
48
-
49
- # --- Body Posture Analysis using MediaPipe Pose ---
50
  pose_results = pose.process(rgb_frame)
51
  shoulder_center = None
52
  if pose_results.pose_landmarks:
53
  h, w, _ = frame.shape
54
  landmarks = [(int(lm.x * w), int(lm.y * h)) for lm in pose_results.pose_landmarks.landmark]
55
-
56
- # Draw body skeleton (only drawing non-facial landmarks, i.e. indices 11 and above).
57
  for connection in mp_pose.POSE_CONNECTIONS:
58
  start_idx, end_idx = connection
59
  if start_idx >= 11 and end_idx >= 11:
60
  if start_idx < len(landmarks) and end_idx < len(landmarks):
61
  cv2.line(output, landmarks[start_idx], landmarks[end_idx], (255, 255, 0), 2)
62
-
63
- # Draw landmarks as yellow circles.
64
  for i, pt in enumerate(landmarks):
65
  if i >= 11:
66
  cv2.circle(output, pt, 3, (255, 255, 0), -1)
67
-
68
- # Calculate shoulder center using landmarks 11 (left shoulder) and 12 (right shoulder).
69
  if len(landmarks) > 12:
70
- left_shoulder = landmarks[11]
71
- right_shoulder = landmarks[12]
72
  shoulder_center = ((left_shoulder[0] + right_shoulder[0]) // 2,
73
  (left_shoulder[1] + right_shoulder[1]) // 2)
74
  cv2.circle(output, shoulder_center, 4, (0, 255, 255), -1)
75
-
76
- # --- Facemesh Analysis using MediaPipe Face Mesh ---
77
  chin_point = None
78
  fm_results = face_mesh.process(rgb_frame)
79
  if fm_results.multi_face_landmarks:
80
  for face_landmarks in fm_results.multi_face_landmarks:
81
  h, w, _ = frame.shape
82
  fm_points = [(int(lm.x * w), int(lm.y * h)) for lm in face_landmarks.landmark]
83
-
84
- # Draw red lines connecting facial landmarks.
85
  for connection in mp_face_mesh.FACEMESH_TESSELATION:
86
  start_idx, end_idx = connection
87
  if start_idx < len(fm_points) and end_idx < len(fm_points):
88
  cv2.line(output, fm_points[start_idx], fm_points[end_idx], (0, 0, 255), 1)
89
-
90
- # Draw green dots for each facial landmark.
91
  for pt in fm_points:
92
  cv2.circle(output, pt, 2, (0, 255, 0), -1)
93
-
94
- # Extract the chin point (landmark 152 is generally at the bottom of the chin).
95
  if len(face_landmarks.landmark) > 152:
96
  lm = face_landmarks.landmark[152]
97
  chin_point = (int(lm.x * w), int(lm.y * h))
98
  cv2.circle(output, chin_point, 4, (0, 0, 255), -1)
99
  break # Process only the first detected face.
100
-
101
- # --- Draw the Neck Line ---
102
  if shoulder_center and chin_point:
103
  cv2.line(output, shoulder_center, chin_point, (0, 255, 255), 2)
104
-
105
- # Convert the processed image back to RGB for display.
106
- output_rgb = cv2.cvtColor(output, cv2.COLOR_BGR2RGB)
107
- return output_rgb
108
 
109
- # Create the Gradio interface.
 
 
 
110
  iface = gr.Interface(
111
  fn=process_frame,
112
- inputs=gr.Image(source="webcam", type="numpy", label="Webcam"),
113
  outputs=gr.Image(type="numpy", label="Processed Output"),
114
  live=True,
115
- title="Body Posture & Neck Analysis (No Face Pose)",
116
- description="Webcam-based analysis using MediaPipe Pose and Face Mesh."
117
  )
118
 
119
- # Launch the Gradio app.
120
  iface.launch()
 
3
  import numpy as np
4
  import gradio as gr
5
 
6
+ # Initialize MediaPipe Pose
7
  mp_pose = mp.solutions.pose
8
  pose = mp_pose.Pose(
9
  static_image_mode=False,
 
13
  min_tracking_confidence=0.5
14
  )
15
 
16
+ # Initialize MediaPipe Face Mesh
17
  mp_face_mesh = mp.solutions.face_mesh
18
  face_mesh = mp_face_mesh.FaceMesh(
19
  static_image_mode=False,
 
25
 
26
  def process_frame(image):
27
  """
28
+ Processes a frame by:
29
+ 1. Converting RGB to BGR for OpenCV.
30
  2. Flipping the frame for a mirror view.
31
  3. Creating a black background.
32
+ 4. Drawing body landmarks and computing shoulder center.
33
+ 5. Drawing facial mesh and extracting chin point.
34
+ 6. Drawing a neck line from shoulder center to chin.
35
+ 7. Converting the result back to RGB.
36
  """
 
37
  frame = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
 
 
38
  frame = cv2.flip(frame, 1)
 
 
39
  output = np.zeros_like(frame)
 
 
40
  rgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
41
+
42
+ # --- Body Posture Analysis ---
43
  pose_results = pose.process(rgb_frame)
44
  shoulder_center = None
45
  if pose_results.pose_landmarks:
46
  h, w, _ = frame.shape
47
  landmarks = [(int(lm.x * w), int(lm.y * h)) for lm in pose_results.pose_landmarks.landmark]
48
+
 
49
  for connection in mp_pose.POSE_CONNECTIONS:
50
  start_idx, end_idx = connection
51
  if start_idx >= 11 and end_idx >= 11:
52
  if start_idx < len(landmarks) and end_idx < len(landmarks):
53
  cv2.line(output, landmarks[start_idx], landmarks[end_idx], (255, 255, 0), 2)
54
+
 
55
  for i, pt in enumerate(landmarks):
56
  if i >= 11:
57
  cv2.circle(output, pt, 3, (255, 255, 0), -1)
58
+
 
59
  if len(landmarks) > 12:
60
+ left_shoulder, right_shoulder = landmarks[11], landmarks[12]
 
61
  shoulder_center = ((left_shoulder[0] + right_shoulder[0]) // 2,
62
  (left_shoulder[1] + right_shoulder[1]) // 2)
63
  cv2.circle(output, shoulder_center, 4, (0, 255, 255), -1)
64
+
65
+ # --- Facial Mesh Analysis ---
66
  chin_point = None
67
  fm_results = face_mesh.process(rgb_frame)
68
  if fm_results.multi_face_landmarks:
69
  for face_landmarks in fm_results.multi_face_landmarks:
70
  h, w, _ = frame.shape
71
  fm_points = [(int(lm.x * w), int(lm.y * h)) for lm in face_landmarks.landmark]
72
+
 
73
  for connection in mp_face_mesh.FACEMESH_TESSELATION:
74
  start_idx, end_idx = connection
75
  if start_idx < len(fm_points) and end_idx < len(fm_points):
76
  cv2.line(output, fm_points[start_idx], fm_points[end_idx], (0, 0, 255), 1)
77
+
 
78
  for pt in fm_points:
79
  cv2.circle(output, pt, 2, (0, 255, 0), -1)
80
+
 
81
  if len(face_landmarks.landmark) > 152:
82
  lm = face_landmarks.landmark[152]
83
  chin_point = (int(lm.x * w), int(lm.y * h))
84
  cv2.circle(output, chin_point, 4, (0, 0, 255), -1)
85
  break # Process only the first detected face.
86
+
87
+ # --- Draw Neck Line ---
88
  if shoulder_center and chin_point:
89
  cv2.line(output, shoulder_center, chin_point, (0, 255, 255), 2)
 
 
 
 
90
 
91
+ return cv2.cvtColor(output, cv2.COLOR_BGR2RGB)
92
+
93
+
94
+ # --- Gradio Interface for Live Webcam Inference ---
95
  iface = gr.Interface(
96
  fn=process_frame,
97
+ inputs=gr.Image(sources=["webcam"], streaming=True, label="Webcam Input"), # Live webcam stream
98
  outputs=gr.Image(type="numpy", label="Processed Output"),
99
  live=True,
100
+ title="Live Body Posture & Neck Analysis (No Face Pose)",
101
+ description="Real-time webcam analysis using MediaPipe Pose and Face Mesh with live inference."
102
  )
103
 
 
104
  iface.launch()