David Driscoll
red lines for FMesh
fd8b339
raw
history blame
16.2 kB
import gradio as gr
import cv2
import numpy as np
import torch
from torchvision import models, transforms
from torchvision.models.detection import FasterRCNN_ResNet50_FPN_Weights
from PIL import Image
import mediapipe as mp
from fer import FER # Facial emotion recognition
# -----------------------------
# Configuration
# -----------------------------
SKIP_RATE = 1 # For image processing, always run the analysis
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
DESIRED_SIZE = (640, 480)
# -----------------------------
# Global caches for overlay info and frame counters
# -----------------------------
posture_cache = {"landmarks": None, "text": "Initializing...", "counter": 0}
emotion_cache = {"text": "Initializing...", "counter": 0}
objects_cache = {"boxes": None, "text": "Initializing...", "object_list_text": "", "counter": 0}
faces_cache = {"boxes": None, "text": "Initializing...", "counter": 0}
# -----------------------------
# Initialize Models and Helpers
# -----------------------------
# MediaPipe Pose, Face Detection, and Face Mesh
mp_pose = mp.solutions.pose
pose = mp_pose.Pose()
mp_drawing = mp.solutions.drawing_utils
mp_face_detection = mp.solutions.face_detection
face_detection = mp_face_detection.FaceDetection(min_detection_confidence=0.5)
# Object Detection using Faster R-CNN
object_detection_model = models.detection.fasterrcnn_resnet50_fpn(
weights=FasterRCNN_ResNet50_FPN_Weights.DEFAULT
)
object_detection_model.eval().to(device)
obj_transform = transforms.Compose([transforms.ToTensor()])
# Initialize the FER emotion detector (using the FER package)
emotion_detector = FER(mtcnn=True)
# Retrieve object categories from model weights metadata
object_categories = FasterRCNN_ResNet50_FPN_Weights.DEFAULT.meta["categories"]
# -----------------------------
# Overlay Drawing Functions
# -----------------------------
def draw_posture_overlay(raw_frame, landmarks):
for connection in mp_pose.POSE_CONNECTIONS:
start_idx, end_idx = connection
if start_idx < len(landmarks) and end_idx < len(landmarks):
start_point = landmarks[start_idx]
end_point = landmarks[end_idx]
cv2.line(raw_frame, start_point, end_point, (50, 205, 50), 2)
for (x, y) in landmarks:
cv2.circle(raw_frame, (x, y), 4, (50, 205, 50), -1)
return raw_frame
def draw_boxes_overlay(raw_frame, boxes, color):
for (x1, y1, x2, y2) in boxes:
cv2.rectangle(raw_frame, (x1, y1), (x2, y2), color, 2)
return raw_frame
# -----------------------------
# Heavy (Synchronous) Detection Functions
# -----------------------------
def compute_posture_overlay(image):
frame_bgr = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
h, w, _ = frame_bgr.shape
frame_bgr_small = cv2.resize(frame_bgr, DESIRED_SIZE)
small_h, small_w, _ = frame_bgr_small.shape
frame_rgb_small = cv2.cvtColor(frame_bgr_small, cv2.COLOR_BGR2RGB)
pose_results = pose.process(frame_rgb_small)
if pose_results.pose_landmarks:
landmarks = []
for lm in pose_results.pose_landmarks.landmark:
x = int(lm.x * small_w * (w / small_w))
y = int(lm.y * small_h * (h / small_h))
landmarks.append((x, y))
text = "Posture detected"
else:
landmarks = []
text = "No posture detected"
return landmarks, text
def compute_emotion_overlay(image):
frame_bgr = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
frame_bgr_small = cv2.resize(frame_bgr, DESIRED_SIZE)
frame_rgb_small = cv2.cvtColor(frame_bgr_small, cv2.COLOR_BGR2RGB)
emotions = emotion_detector.detect_emotions(frame_rgb_small)
if emotions:
top_emotion, score = max(emotions[0]["emotions"].items(), key=lambda x: x[1])
text = f"{top_emotion} ({score:.2f})"
else:
text = "No face detected"
return text
def compute_objects_overlay(image):
frame_bgr = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
frame_bgr_small = cv2.resize(frame_bgr, DESIRED_SIZE)
frame_rgb_small = cv2.cvtColor(frame_bgr_small, cv2.COLOR_BGR2RGB)
image_pil = Image.fromarray(frame_rgb_small)
img_tensor = obj_transform(image_pil).to(device)
with torch.no_grad():
detections = object_detection_model([img_tensor])[0]
threshold = 0.8
boxes = []
object_list = []
for box, score, label in zip(detections["boxes"], detections["scores"], detections["labels"]):
if score > threshold:
boxes.append(tuple(box.int().cpu().numpy()))
label_idx = int(label)
label_name = object_categories[label_idx] if label_idx < len(object_categories) else "Unknown"
object_list.append(f"{label_name} ({score:.2f})")
text = f"Detected {len(boxes)} object(s)" if boxes else "No objects detected"
object_list_text = " | ".join(object_list) if object_list else "None"
return boxes, text, object_list_text
def compute_faces_overlay(image):
frame_bgr = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
h, w, _ = frame_bgr.shape
frame_bgr_small = cv2.resize(frame_bgr, DESIRED_SIZE)
small_h, small_w, _ = frame_bgr_small.shape
frame_rgb_small = cv2.cvtColor(frame_bgr_small, cv2.COLOR_BGR2RGB)
face_results = face_detection.process(frame_rgb_small)
boxes = []
if face_results.detections:
for detection in face_results.detections:
bbox = detection.location_data.relative_bounding_box
x = int(bbox.xmin * small_w)
y = int(bbox.ymin * small_h)
box_w = int(bbox.width * small_w)
box_h = int(bbox.height * small_h)
boxes.append((x, y, x + box_w, y + box_h))
text = f"Detected {len(boxes)} face(s)"
else:
text = "No faces detected"
return boxes, text
# -----------------------------
# New Facemesh Functions (with connected red lines and mask output)
# -----------------------------
def compute_facemesh_overlay(image):
"""
Uses MediaPipe Face Mesh to detect and draw facial landmarks.
Draws green dots for landmarks and connects them with thin red lines.
Returns two images:
- annotated: the original image overlaid with the facemesh
- mask: a black background image with only the facemesh drawn
"""
frame_bgr = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
h, w, _ = frame_bgr.shape
# Create a copy for annotated output and a black mask
annotated = frame_bgr.copy()
mask = np.zeros_like(frame_bgr)
# Initialize Face Mesh in static mode
face_mesh = mp.solutions.face_mesh.FaceMesh(
static_image_mode=True, max_num_faces=1, refine_landmarks=True, min_detection_confidence=0.5
)
results = face_mesh.process(cv2.cvtColor(frame_bgr, cv2.COLOR_BGR2RGB))
if results.multi_face_landmarks:
for face_landmarks in results.multi_face_landmarks:
# Convert landmarks to pixel coordinates
landmark_points = []
for lm in face_landmarks.landmark:
x = int(lm.x * w)
y = int(lm.y * h)
landmark_points.append((x, y))
# Draw thin red lines between connected landmarks using the FACEMESH_TESSELATION
for connection in mp.solutions.face_mesh.FACEMESH_TESSELATION:
start_idx, end_idx = connection
if start_idx < len(landmark_points) and end_idx < len(landmark_points):
pt1 = landmark_points[start_idx]
pt2 = landmark_points[end_idx]
cv2.line(annotated, pt1, pt2, (0, 0, 255), 1)
cv2.line(mask, pt1, pt2, (0, 0, 255), 1)
# Draw green dots for each landmark
for pt in landmark_points:
cv2.circle(annotated, pt, 2, (0, 255, 0), -1)
cv2.circle(mask, pt, 2, (0, 255, 0), -1)
text = "Facemesh detected"
else:
text = "No facemesh detected"
face_mesh.close()
return annotated, mask, text
def analyze_facemesh(image):
annotated_image, mask_image, text = compute_facemesh_overlay(image)
return (annotated_image, mask_image,
f"<div style='color: #ff6347 !important;'>Facemesh Analysis: {text}</div>")
# -----------------------------
# Main Analysis Functions for Single Image
# -----------------------------
def analyze_posture_current(image):
global posture_cache
posture_cache["counter"] += 1
current_frame = np.array(image)
if posture_cache["counter"] % SKIP_RATE == 0 or posture_cache["landmarks"] is None:
landmarks, text = compute_posture_overlay(image)
posture_cache["landmarks"] = landmarks
posture_cache["text"] = text
output = current_frame.copy()
if posture_cache["landmarks"]:
output = draw_posture_overlay(output, posture_cache["landmarks"])
return output, f"<div style='color: #ff6347 !important;'>Posture Analysis: {posture_cache['text']}</div>"
def analyze_emotion_current(image):
global emotion_cache
emotion_cache["counter"] += 1
current_frame = np.array(image)
if emotion_cache["counter"] % SKIP_RATE == 0 or emotion_cache["text"] is None:
text = compute_emotion_overlay(image)
emotion_cache["text"] = text
return current_frame, f"<div style='color: #ff6347 !important;'>Emotion Analysis: {emotion_cache['text']}</div>"
def analyze_objects_current(image):
global objects_cache
objects_cache["counter"] += 1
current_frame = np.array(image)
if objects_cache["counter"] % SKIP_RATE == 0 or objects_cache["boxes"] is None:
boxes, text, object_list_text = compute_objects_overlay(image)
objects_cache["boxes"] = boxes
objects_cache["text"] = text
objects_cache["object_list_text"] = object_list_text
output = current_frame.copy()
if objects_cache["boxes"]:
output = draw_boxes_overlay(output, objects_cache["boxes"], (255, 255, 0))
combined_text = f"Object Detection: {objects_cache['text']}<br>Details: {objects_cache['object_list_text']}"
return output, f"<div style='color: #ff6347 !important;'>{combined_text}</div>"
def analyze_faces_current(image):
global faces_cache
faces_cache["counter"] += 1
current_frame = np.array(image)
if faces_cache["counter"] % SKIP_RATE == 0 or faces_cache["boxes"] is None:
boxes, text = compute_faces_overlay(image)
faces_cache["boxes"] = boxes
faces_cache["text"] = text
output = current_frame.copy()
if faces_cache["boxes"]:
output = draw_boxes_overlay(output, faces_cache["boxes"], (0, 0, 255))
return output, f"<div style='color: #ff6347 !important;'>Face Detection: {faces_cache['text']}</div>"
def analyze_all(image):
current_frame = np.array(image).copy()
landmarks, posture_text = compute_posture_overlay(image)
if landmarks:
current_frame = draw_posture_overlay(current_frame, landmarks)
emotion_text = compute_emotion_overlay(image)
boxes_obj, objects_text, object_list_text = compute_objects_overlay(image)
if boxes_obj:
current_frame = draw_boxes_overlay(current_frame, boxes_obj, (255, 255, 0))
boxes_face, faces_text = compute_faces_overlay(image)
if boxes_face:
current_frame = draw_boxes_overlay(current_frame, boxes_face, (0, 0, 255))
combined_text = (
f"<b>Posture Analysis:</b> {posture_text}<br>"
f"<b>Emotion Analysis:</b> {emotion_text}<br>"
f"<b>Object Detection:</b> {objects_text}<br>"
f"<b>Detected Objects:</b> {object_list_text}<br>"
f"<b>Face Detection:</b> {faces_text}"
)
if object_list_text and object_list_text != "None":
description_text = f"Image Description: The scene features {object_list_text}."
else:
description_text = "Image Description: No prominent objects detected."
combined_text += f"<br><br><div style='border:1px solid #ff6347; padding:10px; box-shadow: 0 0 10px #ff6347;'><b>{description_text}</b></div>"
combined_text_html = f"<div style='color: #ff6347 !important;'>{combined_text}</div>"
return current_frame, combined_text_html
# -----------------------------
# Custom CSS (Revamped High-Contrast Neon Theme)
# -----------------------------
custom_css = """
@import url('https://fonts.googleapis.com/css2?family=Orbitron:wght@400;700&display=swap');
body {
background-color: #121212;
font-family: 'Orbitron', sans-serif;
color: #ffffff;
}
.gradio-container {
background: linear-gradient(135deg, #2d2d2d, #1a1a1a);
border: 2px solid #ff6347;
box-shadow: 0 0 15px #ff6347;
border-radius: 10px;
padding: 20px;
max-width: 1200px;
margin: auto;
}
.gradio-title, .gradio-description, .tab-item, .tab-item * {
color: #ff6347 !important;
text-shadow: 0 0 10px #ff6347;
}
input, button, .output {
border: 1px solid #ff6347;
box-shadow: 0 0 8px #ff6347;
color: #ffffff;
background-color: #1a1a1a;
}
"""
# -----------------------------
# Create Individual Interfaces for Image Processing
# -----------------------------
posture_interface = gr.Interface(
fn=analyze_posture_current,
inputs=gr.Image(label="Upload an Image for Posture Analysis"),
outputs=[gr.Image(type="numpy", label="Annotated Output"), gr.HTML(label="Posture Analysis")],
title="Posture",
description="Detects your posture using MediaPipe with connector lines.",
live=False
)
emotion_interface = gr.Interface(
fn=analyze_emotion_current,
inputs=gr.Image(label="Upload an Image for Emotion Analysis"),
outputs=[gr.Image(type="numpy", label="Annotated Output"), gr.HTML(label="Emotion Analysis")],
title="Emotion",
description="Detects facial emotions using FER.",
live=False
)
objects_interface = gr.Interface(
fn=analyze_objects_current,
inputs=gr.Image(label="Upload an Image for Object Detection"),
outputs=[gr.Image(type="numpy", label="Annotated Output"), gr.HTML(label="Object Detection")],
title="Objects",
description="Detects objects using a pretrained Faster R-CNN.",
live=False
)
faces_interface = gr.Interface(
fn=analyze_faces_current,
inputs=gr.Image(label="Upload an Image for Face Detection"),
outputs=[gr.Image(type="numpy", label="Annotated Output"), gr.HTML(label="Face Detection")],
title="Faces",
description="Detects faces using MediaPipe.",
live=False
)
# -----------------------------
# New Facemesh Interface (Outputs annotated image and mask)
# -----------------------------
facemesh_interface = gr.Interface(
fn=analyze_facemesh,
inputs=gr.Image(label="Upload an Image for Facemesh"),
outputs=[
gr.Image(type="numpy", label="Annotated Output"),
gr.Image(type="numpy", label="Mask Output"),
gr.HTML(label="Facemesh Analysis")
],
title="Facemesh",
description="Detects facial landmarks using MediaPipe Face Mesh and outputs both an annotated image and a mask on a black background.",
live=False
)
all_interface = gr.Interface(
fn=analyze_all,
inputs=gr.Image(label="Upload an Image for All Inferences"),
outputs=[gr.Image(type="numpy", label="Annotated Output"), gr.HTML(label="Combined Analysis")],
title="All Inferences",
description="Runs posture, emotion, object, and face detection all at once.",
live=False
)
tabbed_interface = gr.TabbedInterface(
interface_list=[
posture_interface,
emotion_interface,
objects_interface,
faces_interface,
facemesh_interface,
all_interface
],
tab_names=[
"Posture",
"Emotion",
"Objects",
"Faces",
"Facemesh",
"All Inferences"
]
)
# -----------------------------
# Wrap in a Blocks Layout and Launch
# -----------------------------
demo = gr.Blocks(css=custom_css)
with demo:
gr.Markdown("<h1 class='gradio-title'>Multi-Analysis Image App</h1>")
gr.Markdown("<p class='gradio-description'>Upload an image to run high-tech analysis for posture, emotions, objects, faces, and facemesh landmarks.</p>")
tabbed_interface.render()
if __name__ == "__main__":
demo.launch()