David Driscoll
commited on
Commit
·
2553966
1
Parent(s):
5f27df7
Lag reduction
Browse files
app.py
CHANGED
@@ -7,11 +7,37 @@ from torchvision.models.detection import FasterRCNN_ResNet50_FPN_Weights
|
|
7 |
from PIL import Image
|
8 |
import mediapipe as mp
|
9 |
from fer import FER # Facial emotion recognition
|
|
|
10 |
|
11 |
# -----------------------------
|
12 |
-
#
|
13 |
# -----------------------------
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
# -----------------------------
|
17 |
# Initialize Models and Helpers
|
@@ -37,141 +63,91 @@ obj_transform = transforms.Compose([transforms.ToTensor()])
|
|
37 |
emotion_detector = FER(mtcnn=True)
|
38 |
|
39 |
# -----------------------------
|
40 |
-
#
|
41 |
# -----------------------------
|
42 |
|
43 |
-
def
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
mp_drawing.DrawingSpec(color=(0, 0, 255), thickness=2)
|
68 |
-
)
|
69 |
-
|
70 |
-
annotated_image = cv2.cvtColor(output_frame, cv2.COLOR_BGR2RGB)
|
71 |
-
result = (annotated_image, f"Posture Analysis: {posture_result}")
|
72 |
-
analyze_posture.last_output = result
|
73 |
-
return result
|
74 |
else:
|
75 |
-
|
76 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
""
|
83 |
-
if not hasattr(analyze_emotion, "counter"):
|
84 |
-
analyze_emotion.counter = 0
|
85 |
-
analyze_emotion.last_output = None
|
86 |
-
analyze_emotion.counter += 1
|
87 |
|
88 |
-
|
89 |
-
|
90 |
-
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
91 |
-
emotions = emotion_detector.detect_emotions(frame_rgb)
|
92 |
-
if emotions:
|
93 |
-
top_emotion, score = max(emotions[0]["emotions"].items(), key=lambda x: x[1])
|
94 |
-
emotion_text = f"{top_emotion} ({score:.2f})"
|
95 |
-
else:
|
96 |
-
emotion_text = "No face detected for emotion analysis"
|
97 |
-
annotated_image = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
98 |
-
result = (annotated_image, f"Emotion Analysis: {emotion_text}")
|
99 |
-
analyze_emotion.last_output = result
|
100 |
-
return result
|
101 |
-
else:
|
102 |
-
return analyze_emotion.last_output
|
103 |
|
104 |
def analyze_objects(image):
|
105 |
-
""
|
106 |
-
Uses Faster R-CNN to detect objects in the webcam image.
|
107 |
-
Heavy detection is run every SKIP_RATE frames.
|
108 |
-
"""
|
109 |
-
if not hasattr(analyze_objects, "counter"):
|
110 |
-
analyze_objects.counter = 0
|
111 |
-
analyze_objects.last_output = None
|
112 |
-
analyze_objects.counter += 1
|
113 |
-
|
114 |
-
if analyze_objects.counter % SKIP_RATE == 0 or analyze_objects.last_output is None:
|
115 |
-
frame = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
|
116 |
-
output_frame = frame.copy()
|
117 |
-
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
118 |
-
image_pil = Image.fromarray(frame_rgb)
|
119 |
-
img_tensor = obj_transform(image_pil)
|
120 |
-
|
121 |
-
with torch.no_grad():
|
122 |
-
detections = object_detection_model([img_tensor])[0]
|
123 |
-
|
124 |
-
threshold = 0.8
|
125 |
-
detected_boxes = detections["boxes"][detections["scores"] > threshold]
|
126 |
-
for box in detected_boxes:
|
127 |
-
box = box.int().cpu().numpy()
|
128 |
-
cv2.rectangle(output_frame, (box[0], box[1]), (box[2], box[3]), (255, 255, 0), 2)
|
129 |
-
|
130 |
-
object_result = f"Detected {len(detected_boxes)} object(s)" if len(detected_boxes) else "No objects detected"
|
131 |
-
annotated_image = cv2.cvtColor(output_frame, cv2.COLOR_BGR2RGB)
|
132 |
-
result = (annotated_image, f"Object Detection: {object_result}")
|
133 |
-
analyze_objects.last_output = result
|
134 |
-
return result
|
135 |
-
else:
|
136 |
-
return analyze_objects.last_output
|
137 |
|
138 |
def analyze_faces(image):
|
139 |
-
""
|
140 |
-
Uses MediaPipe to detect faces in the webcam image.
|
141 |
-
Runs heavy detection every SKIP_RATE frames.
|
142 |
-
"""
|
143 |
-
if not hasattr(analyze_faces, "counter"):
|
144 |
-
analyze_faces.counter = 0
|
145 |
-
analyze_faces.last_output = None
|
146 |
-
analyze_faces.counter += 1
|
147 |
-
|
148 |
-
if analyze_faces.counter % SKIP_RATE == 0 or analyze_faces.last_output is None:
|
149 |
-
frame = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
|
150 |
-
output_frame = frame.copy()
|
151 |
-
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
152 |
-
face_results = face_detection.process(frame_rgb)
|
153 |
-
|
154 |
-
face_result = "No faces detected"
|
155 |
-
if face_results.detections:
|
156 |
-
face_result = f"Detected {len(face_results.detections)} face(s)"
|
157 |
-
h, w, _ = output_frame.shape
|
158 |
-
for detection in face_results.detections:
|
159 |
-
bbox = detection.location_data.relative_bounding_box
|
160 |
-
x = int(bbox.xmin * w)
|
161 |
-
y = int(bbox.ymin * h)
|
162 |
-
box_w = int(bbox.width * w)
|
163 |
-
box_h = int(bbox.height * h)
|
164 |
-
cv2.rectangle(output_frame, (x, y), (x + box_w, y + box_h), (0, 0, 255), 2)
|
165 |
-
|
166 |
-
annotated_image = cv2.cvtColor(output_frame, cv2.COLOR_BGR2RGB)
|
167 |
-
result = (annotated_image, f"Face Detection: {face_result}")
|
168 |
-
analyze_faces.last_output = result
|
169 |
-
return result
|
170 |
-
else:
|
171 |
-
return analyze_faces.last_output
|
172 |
|
173 |
# -----------------------------
|
174 |
-
# Custom CSS for a High-Tech Look (
|
175 |
# -----------------------------
|
176 |
custom_css = """
|
177 |
@import url('https://fonts.googleapis.com/css2?family=Orbitron:wght@400;700&display=swap');
|
@@ -204,7 +180,7 @@ body {
|
|
204 |
"""
|
205 |
|
206 |
# -----------------------------
|
207 |
-
# Create Individual Interfaces for Each Analysis
|
208 |
# -----------------------------
|
209 |
posture_interface = gr.Interface(
|
210 |
fn=analyze_posture,
|
|
|
7 |
from PIL import Image
|
8 |
import mediapipe as mp
|
9 |
from fer import FER # Facial emotion recognition
|
10 |
+
from concurrent.futures import ThreadPoolExecutor
|
11 |
|
12 |
# -----------------------------
|
13 |
+
# Global Asynchronous Executor & Caches
|
14 |
# -----------------------------
|
15 |
+
executor = ThreadPoolExecutor(max_workers=4)
|
16 |
+
latest_results = {
|
17 |
+
"posture": None,
|
18 |
+
"emotion": None,
|
19 |
+
"objects": None,
|
20 |
+
"faces": None
|
21 |
+
}
|
22 |
+
futures = {
|
23 |
+
"posture": None,
|
24 |
+
"emotion": None,
|
25 |
+
"objects": None,
|
26 |
+
"faces": None
|
27 |
+
}
|
28 |
+
|
29 |
+
def async_analyze(key, func, image):
|
30 |
+
"""
|
31 |
+
Runs the heavy detection function 'func' in a background thread.
|
32 |
+
Returns the last computed result (if available) so that the output
|
33 |
+
FPS remains high even if the detection lags.
|
34 |
+
"""
|
35 |
+
if futures[key] is None or futures[key].done():
|
36 |
+
futures[key] = executor.submit(func, image)
|
37 |
+
if futures[key].done():
|
38 |
+
latest_results[key] = futures[key].result()
|
39 |
+
# Return latest result if available; otherwise, compute synchronously
|
40 |
+
return latest_results.get(key, func(image))
|
41 |
|
42 |
# -----------------------------
|
43 |
# Initialize Models and Helpers
|
|
|
63 |
emotion_detector = FER(mtcnn=True)
|
64 |
|
65 |
# -----------------------------
|
66 |
+
# Heavy (Synchronous) Analysis Functions
|
67 |
# -----------------------------
|
68 |
|
69 |
+
def _analyze_posture(image):
|
70 |
+
# Convert from PIL (RGB) to OpenCV BGR format
|
71 |
+
frame = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
|
72 |
+
output_frame = frame.copy()
|
73 |
+
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
74 |
+
posture_result = "No posture detected"
|
75 |
+
pose_results = pose.process(frame_rgb)
|
76 |
+
if pose_results.pose_landmarks:
|
77 |
+
posture_result = "Posture detected"
|
78 |
+
mp_drawing.draw_landmarks(
|
79 |
+
output_frame, pose_results.pose_landmarks, mp_pose.POSE_CONNECTIONS,
|
80 |
+
mp_drawing.DrawingSpec(color=(0, 255, 0), thickness=2, circle_radius=2),
|
81 |
+
mp_drawing.DrawingSpec(color=(0, 0, 255), thickness=2)
|
82 |
+
)
|
83 |
+
annotated_image = cv2.cvtColor(output_frame, cv2.COLOR_BGR2RGB)
|
84 |
+
return annotated_image, f"Posture Analysis: {posture_result}"
|
85 |
+
|
86 |
+
def _analyze_emotion(image):
|
87 |
+
frame = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
|
88 |
+
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
89 |
+
emotions = emotion_detector.detect_emotions(frame_rgb)
|
90 |
+
if emotions:
|
91 |
+
top_emotion, score = max(emotions[0]["emotions"].items(), key=lambda x: x[1])
|
92 |
+
emotion_text = f"{top_emotion} ({score:.2f})"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
else:
|
94 |
+
emotion_text = "No face detected for emotion analysis"
|
95 |
+
annotated_image = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
96 |
+
return annotated_image, f"Emotion Analysis: {emotion_text}"
|
97 |
+
|
98 |
+
def _analyze_objects(image):
|
99 |
+
frame = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
|
100 |
+
output_frame = frame.copy()
|
101 |
+
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
102 |
+
image_pil = Image.fromarray(frame_rgb)
|
103 |
+
img_tensor = obj_transform(image_pil)
|
104 |
+
with torch.no_grad():
|
105 |
+
detections = object_detection_model([img_tensor])[0]
|
106 |
+
threshold = 0.8
|
107 |
+
detected_boxes = detections["boxes"][detections["scores"] > threshold]
|
108 |
+
for box in detected_boxes:
|
109 |
+
box = box.int().cpu().numpy()
|
110 |
+
cv2.rectangle(output_frame, (box[0], box[1]), (box[2], box[3]), (255, 255, 0), 2)
|
111 |
+
object_result = f"Detected {len(detected_boxes)} object(s)" if len(detected_boxes) else "No objects detected"
|
112 |
+
annotated_image = cv2.cvtColor(output_frame, cv2.COLOR_BGR2RGB)
|
113 |
+
return annotated_image, f"Object Detection: {object_result}"
|
114 |
+
|
115 |
+
def _analyze_faces(image):
|
116 |
+
frame = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
|
117 |
+
output_frame = frame.copy()
|
118 |
+
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
119 |
+
face_results = face_detection.process(frame_rgb)
|
120 |
+
face_result = "No faces detected"
|
121 |
+
if face_results.detections:
|
122 |
+
face_result = f"Detected {len(face_results.detections)} face(s)"
|
123 |
+
h, w, _ = output_frame.shape
|
124 |
+
for detection in face_results.detections:
|
125 |
+
bbox = detection.location_data.relative_bounding_box
|
126 |
+
x = int(bbox.xmin * w)
|
127 |
+
y = int(bbox.ymin * h)
|
128 |
+
box_w = int(bbox.width * w)
|
129 |
+
box_h = int(bbox.height * h)
|
130 |
+
cv2.rectangle(output_frame, (x, y), (x + box_w, y + box_h), (0, 0, 255), 2)
|
131 |
+
annotated_image = cv2.cvtColor(output_frame, cv2.COLOR_BGR2RGB)
|
132 |
+
return annotated_image, f"Face Detection: {face_result}"
|
133 |
|
134 |
+
# -----------------------------
|
135 |
+
# Asynchronous (Fast) Analysis Functions
|
136 |
+
# -----------------------------
|
137 |
+
def analyze_posture(image):
|
138 |
+
return async_analyze("posture", _analyze_posture, image)
|
|
|
|
|
|
|
|
|
139 |
|
140 |
+
def analyze_emotion(image):
|
141 |
+
return async_analyze("emotion", _analyze_emotion, image)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
142 |
|
143 |
def analyze_objects(image):
|
144 |
+
return async_analyze("objects", _analyze_objects, image)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
145 |
|
146 |
def analyze_faces(image):
|
147 |
+
return async_analyze("faces", _analyze_faces, image)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
148 |
|
149 |
# -----------------------------
|
150 |
+
# Custom CSS for a High-Tech Look (White Font)
|
151 |
# -----------------------------
|
152 |
custom_css = """
|
153 |
@import url('https://fonts.googleapis.com/css2?family=Orbitron:wght@400;700&display=swap');
|
|
|
180 |
"""
|
181 |
|
182 |
# -----------------------------
|
183 |
+
# Create Individual Interfaces for Each Analysis
|
184 |
# -----------------------------
|
185 |
posture_interface = gr.Interface(
|
186 |
fn=analyze_posture,
|