David Driscoll
commited on
Commit
·
d4ac8c5
1
Parent(s):
02a025d
Update app
Browse files
app.py
CHANGED
@@ -3,6 +3,7 @@ import cv2
|
|
3 |
import numpy as np
|
4 |
import torch
|
5 |
from torchvision import models, transforms
|
|
|
6 |
from PIL import Image
|
7 |
import mediapipe as mp
|
8 |
from fer import FER # Facial emotion recognition
|
@@ -21,7 +22,9 @@ mp_face_detection = mp.solutions.face_detection
|
|
21 |
face_detection = mp_face_detection.FaceDetection(min_detection_confidence=0.5)
|
22 |
|
23 |
# Object Detection Model: Faster R-CNN (pretrained on COCO)
|
24 |
-
object_detection_model = models.detection.fasterrcnn_resnet50_fpn(
|
|
|
|
|
25 |
object_detection_model.eval()
|
26 |
obj_transform = transforms.Compose([transforms.ToTensor()])
|
27 |
|
@@ -38,7 +41,7 @@ def analyze_posture(frame_rgb, output_frame):
|
|
38 |
posture_text = "No posture detected"
|
39 |
if pose_results.pose_landmarks:
|
40 |
posture_text = "Posture detected"
|
41 |
-
# Draw the pose landmarks on the output image
|
42 |
mp_drawing.draw_landmarks(
|
43 |
output_frame, pose_results.pose_landmarks, mp_pose.POSE_CONNECTIONS,
|
44 |
mp_drawing.DrawingSpec(color=(0, 255, 0), thickness=2, circle_radius=2),
|
@@ -65,7 +68,7 @@ def analyze_objects(frame_rgb, output_frame):
|
|
65 |
img_tensor = obj_transform(image_pil)
|
66 |
with torch.no_grad():
|
67 |
detections = object_detection_model([img_tensor])[0]
|
68 |
-
|
69 |
threshold = 0.8
|
70 |
detected_boxes = detections["boxes"][detections["scores"] > threshold]
|
71 |
for box in detected_boxes:
|
@@ -94,26 +97,33 @@ def analyze_faces(frame_rgb, output_frame):
|
|
94 |
# Main Analysis Function
|
95 |
# -----------------------------
|
96 |
|
97 |
-
def analyze_webcam(
|
98 |
"""
|
99 |
-
|
100 |
-
|
|
|
|
|
101 |
"""
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
|
|
|
|
|
|
|
|
|
|
106 |
output_frame = frame.copy()
|
107 |
-
|
108 |
-
# Convert frame to RGB for
|
109 |
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
110 |
-
|
111 |
# Run analyses
|
112 |
posture_result = analyze_posture(frame_rgb, output_frame)
|
113 |
emotion_result = analyze_emotion(frame)
|
114 |
object_result = analyze_objects(frame_rgb, output_frame)
|
115 |
face_result = analyze_faces(frame_rgb, output_frame)
|
116 |
-
|
117 |
# Compose the result summary text
|
118 |
summary = (
|
119 |
f"Posture Analysis: {posture_result}\n"
|
@@ -121,25 +131,25 @@ def analyze_webcam(frame):
|
|
121 |
f"Object Detection: {object_result}\n"
|
122 |
f"Face Detection: {face_result}"
|
123 |
)
|
124 |
-
|
125 |
-
# Optionally, overlay some
|
126 |
cv2.putText(output_frame, f"Emotion: {emotion_result}", (10, 30),
|
127 |
cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 0, 0), 2)
|
128 |
cv2.putText(output_frame, f"Objects: {object_result}", (10, 70),
|
129 |
cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 255), 2)
|
130 |
cv2.putText(output_frame, f"Faces: {face_result}", (10, 110),
|
131 |
cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)
|
132 |
-
|
133 |
return output_frame, summary
|
134 |
|
135 |
# -----------------------------
|
136 |
# Gradio Interface Setup
|
137 |
# -----------------------------
|
138 |
|
139 |
-
#
|
140 |
interface = gr.Interface(
|
141 |
fn=analyze_webcam,
|
142 |
-
inputs=gr.
|
143 |
outputs=[
|
144 |
gr.Image(type="numpy", label="Annotated Output"),
|
145 |
gr.Textbox(label="Analysis Summary")
|
|
|
3 |
import numpy as np
|
4 |
import torch
|
5 |
from torchvision import models, transforms
|
6 |
+
from torchvision.models.detection import FasterRCNN_ResNet50_FPN_Weights
|
7 |
from PIL import Image
|
8 |
import mediapipe as mp
|
9 |
from fer import FER # Facial emotion recognition
|
|
|
22 |
face_detection = mp_face_detection.FaceDetection(min_detection_confidence=0.5)
|
23 |
|
24 |
# Object Detection Model: Faster R-CNN (pretrained on COCO)
|
25 |
+
object_detection_model = models.detection.fasterrcnn_resnet50_fpn(
|
26 |
+
weights=FasterRCNN_ResNet50_FPN_Weights.DEFAULT
|
27 |
+
)
|
28 |
object_detection_model.eval()
|
29 |
obj_transform = transforms.Compose([transforms.ToTensor()])
|
30 |
|
|
|
41 |
posture_text = "No posture detected"
|
42 |
if pose_results.pose_landmarks:
|
43 |
posture_text = "Posture detected"
|
44 |
+
# Draw the pose landmarks on the output image
|
45 |
mp_drawing.draw_landmarks(
|
46 |
output_frame, pose_results.pose_landmarks, mp_pose.POSE_CONNECTIONS,
|
47 |
mp_drawing.DrawingSpec(color=(0, 255, 0), thickness=2, circle_radius=2),
|
|
|
68 |
img_tensor = obj_transform(image_pil)
|
69 |
with torch.no_grad():
|
70 |
detections = object_detection_model([img_tensor])[0]
|
71 |
+
|
72 |
threshold = 0.8
|
73 |
detected_boxes = detections["boxes"][detections["scores"] > threshold]
|
74 |
for box in detected_boxes:
|
|
|
97 |
# Main Analysis Function
|
98 |
# -----------------------------
|
99 |
|
100 |
+
def analyze_webcam(video_path):
|
101 |
"""
|
102 |
+
Receives a video file from the webcam, extracts one frame,
|
103 |
+
then runs posture analysis, facial emotion detection, object detection,
|
104 |
+
and face detection on that frame.
|
105 |
+
Returns an annotated image and a textual summary.
|
106 |
"""
|
107 |
+
# Open the video file (the webcam stream is saved as a temporary file)
|
108 |
+
cap = cv2.VideoCapture(video_path)
|
109 |
+
success, frame = cap.read()
|
110 |
+
cap.release()
|
111 |
+
|
112 |
+
if not success:
|
113 |
+
return None, "Could not read a frame from the video."
|
114 |
+
|
115 |
+
# Create a copy for drawing annotations
|
116 |
output_frame = frame.copy()
|
117 |
+
|
118 |
+
# Convert frame to RGB for certain analyses
|
119 |
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
120 |
+
|
121 |
# Run analyses
|
122 |
posture_result = analyze_posture(frame_rgb, output_frame)
|
123 |
emotion_result = analyze_emotion(frame)
|
124 |
object_result = analyze_objects(frame_rgb, output_frame)
|
125 |
face_result = analyze_faces(frame_rgb, output_frame)
|
126 |
+
|
127 |
# Compose the result summary text
|
128 |
summary = (
|
129 |
f"Posture Analysis: {posture_result}\n"
|
|
|
131 |
f"Object Detection: {object_result}\n"
|
132 |
f"Face Detection: {face_result}"
|
133 |
)
|
134 |
+
|
135 |
+
# Optionally, overlay some summary text on the image
|
136 |
cv2.putText(output_frame, f"Emotion: {emotion_result}", (10, 30),
|
137 |
cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 0, 0), 2)
|
138 |
cv2.putText(output_frame, f"Objects: {object_result}", (10, 70),
|
139 |
cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 255), 2)
|
140 |
cv2.putText(output_frame, f"Faces: {face_result}", (10, 110),
|
141 |
cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)
|
142 |
+
|
143 |
return output_frame, summary
|
144 |
|
145 |
# -----------------------------
|
146 |
# Gradio Interface Setup
|
147 |
# -----------------------------
|
148 |
|
149 |
+
# Using gr.Video to capture webcam input in Gradio 5.x
|
150 |
interface = gr.Interface(
|
151 |
fn=analyze_webcam,
|
152 |
+
inputs=gr.Video(source="webcam", streaming=True, label="Webcam Feed"),
|
153 |
outputs=[
|
154 |
gr.Image(type="numpy", label="Annotated Output"),
|
155 |
gr.Textbox(label="Analysis Summary")
|