David Driscoll
commited on
Commit
·
e5a1544
1
Parent(s):
81307fe
Added Gradio multi-analysis app
Browse files- app.py +156 -0
- requirements.txt +8 -0
app.py
ADDED
@@ -0,0 +1,156 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import cv2
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
from torchvision import models, transforms
|
6 |
+
from PIL import Image
|
7 |
+
import mediapipe as mp
|
8 |
+
from fer import FER # Facial emotion recognition
|
9 |
+
|
10 |
+
# -----------------------------
|
11 |
+
# Initialize Models and Helpers
|
12 |
+
# -----------------------------
|
13 |
+
|
14 |
+
# MediaPipe Pose for posture analysis
|
15 |
+
mp_pose = mp.solutions.pose
|
16 |
+
pose = mp_pose.Pose()
|
17 |
+
mp_drawing = mp.solutions.drawing_utils
|
18 |
+
|
19 |
+
# MediaPipe Face Detection for face detection
|
20 |
+
mp_face_detection = mp.solutions.face_detection
|
21 |
+
face_detection = mp_face_detection.FaceDetection(min_detection_confidence=0.5)
|
22 |
+
|
23 |
+
# Object Detection Model: Faster R-CNN (pretrained on COCO)
|
24 |
+
object_detection_model = models.detection.fasterrcnn_resnet50_fpn(pretrained=True)
|
25 |
+
object_detection_model.eval()
|
26 |
+
obj_transform = transforms.Compose([transforms.ToTensor()])
|
27 |
+
|
28 |
+
# Facial Emotion Detection using FER (this model will detect emotions from a face)
|
29 |
+
emotion_detector = FER(mtcnn=True)
|
30 |
+
|
31 |
+
# -----------------------------
|
32 |
+
# Define Analysis Functions
|
33 |
+
# -----------------------------
|
34 |
+
|
35 |
+
def analyze_posture(frame_rgb, output_frame):
|
36 |
+
"""Runs pose estimation and draws landmarks on the frame."""
|
37 |
+
pose_results = pose.process(frame_rgb)
|
38 |
+
posture_text = "No posture detected"
|
39 |
+
if pose_results.pose_landmarks:
|
40 |
+
posture_text = "Posture detected"
|
41 |
+
# Draw the pose landmarks on the output image (convert back to BGR for OpenCV)
|
42 |
+
mp_drawing.draw_landmarks(
|
43 |
+
output_frame, pose_results.pose_landmarks, mp_pose.POSE_CONNECTIONS,
|
44 |
+
mp_drawing.DrawingSpec(color=(0, 255, 0), thickness=2, circle_radius=2),
|
45 |
+
mp_drawing.DrawingSpec(color=(0, 0, 255), thickness=2)
|
46 |
+
)
|
47 |
+
return posture_text
|
48 |
+
|
49 |
+
def analyze_emotion(frame):
|
50 |
+
"""Detects emotion from faces using FER. Returns the dominant emotion."""
|
51 |
+
# FER expects RGB images
|
52 |
+
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
53 |
+
emotions = emotion_detector.detect_emotions(frame_rgb)
|
54 |
+
if emotions:
|
55 |
+
# Use the first detected face and its top emotion
|
56 |
+
top_emotion, score = max(emotions[0]["emotions"].items(), key=lambda x: x[1])
|
57 |
+
emotion_text = f"{top_emotion} ({score:.2f})"
|
58 |
+
else:
|
59 |
+
emotion_text = "No face detected for emotion analysis"
|
60 |
+
return emotion_text
|
61 |
+
|
62 |
+
def analyze_objects(frame_rgb, output_frame):
|
63 |
+
"""Performs object detection and draws bounding boxes for detections above a threshold."""
|
64 |
+
image_pil = Image.fromarray(frame_rgb)
|
65 |
+
img_tensor = obj_transform(image_pil)
|
66 |
+
with torch.no_grad():
|
67 |
+
detections = object_detection_model([img_tensor])[0]
|
68 |
+
|
69 |
+
threshold = 0.8
|
70 |
+
detected_boxes = detections["boxes"][detections["scores"] > threshold]
|
71 |
+
for box in detected_boxes:
|
72 |
+
box = box.int().cpu().numpy()
|
73 |
+
cv2.rectangle(output_frame, (box[0], box[1]), (box[2], box[3]), (255, 255, 0), 2)
|
74 |
+
object_text = f"Detected {len(detected_boxes)} object(s)" if len(detected_boxes) else "No objects detected"
|
75 |
+
return object_text
|
76 |
+
|
77 |
+
def analyze_faces(frame_rgb, output_frame):
|
78 |
+
"""Detects faces using MediaPipe and draws bounding boxes."""
|
79 |
+
face_results = face_detection.process(frame_rgb)
|
80 |
+
face_text = "No faces detected"
|
81 |
+
if face_results.detections:
|
82 |
+
face_text = f"Detected {len(face_results.detections)} face(s)"
|
83 |
+
h, w, _ = output_frame.shape
|
84 |
+
for detection in face_results.detections:
|
85 |
+
bbox = detection.location_data.relative_bounding_box
|
86 |
+
x = int(bbox.xmin * w)
|
87 |
+
y = int(bbox.ymin * h)
|
88 |
+
box_w = int(bbox.width * w)
|
89 |
+
box_h = int(bbox.height * h)
|
90 |
+
cv2.rectangle(output_frame, (x, y), (x + box_w, y + box_h), (0, 0, 255), 2)
|
91 |
+
return face_text
|
92 |
+
|
93 |
+
# -----------------------------
|
94 |
+
# Main Analysis Function
|
95 |
+
# -----------------------------
|
96 |
+
|
97 |
+
def analyze_webcam(frame):
|
98 |
+
"""
|
99 |
+
Runs posture analysis, facial emotion analysis, object detection, and face detection
|
100 |
+
on the given webcam frame. Returns an annotated image and a textual summary.
|
101 |
+
"""
|
102 |
+
if frame is None:
|
103 |
+
return None, "No frame provided."
|
104 |
+
|
105 |
+
# The input frame is in BGR (as from OpenCV). Create a copy for drawing.
|
106 |
+
output_frame = frame.copy()
|
107 |
+
|
108 |
+
# Convert frame to RGB for analysis
|
109 |
+
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
110 |
+
|
111 |
+
# Run analyses
|
112 |
+
posture_result = analyze_posture(frame_rgb, output_frame)
|
113 |
+
emotion_result = analyze_emotion(frame)
|
114 |
+
object_result = analyze_objects(frame_rgb, output_frame)
|
115 |
+
face_result = analyze_faces(frame_rgb, output_frame)
|
116 |
+
|
117 |
+
# Compose the result summary text
|
118 |
+
summary = (
|
119 |
+
f"Posture Analysis: {posture_result}\n"
|
120 |
+
f"Emotion Analysis: {emotion_result}\n"
|
121 |
+
f"Object Detection: {object_result}\n"
|
122 |
+
f"Face Detection: {face_result}"
|
123 |
+
)
|
124 |
+
|
125 |
+
# Optionally, overlay some of the summary text on the image
|
126 |
+
cv2.putText(output_frame, f"Emotion: {emotion_result}", (10, 30),
|
127 |
+
cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 0, 0), 2)
|
128 |
+
cv2.putText(output_frame, f"Objects: {object_result}", (10, 70),
|
129 |
+
cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 255), 2)
|
130 |
+
cv2.putText(output_frame, f"Faces: {face_result}", (10, 110),
|
131 |
+
cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)
|
132 |
+
|
133 |
+
return output_frame, summary
|
134 |
+
|
135 |
+
# -----------------------------
|
136 |
+
# Gradio Interface Setup
|
137 |
+
# -----------------------------
|
138 |
+
|
139 |
+
# We output both an image (with drawn annotations) and a text summary.
|
140 |
+
interface = gr.Interface(
|
141 |
+
fn=analyze_webcam,
|
142 |
+
inputs=gr.Image(source="webcam", streaming=True, label="Webcam Feed"),
|
143 |
+
outputs=[
|
144 |
+
gr.Image(type="numpy", label="Annotated Output"),
|
145 |
+
gr.Textbox(label="Analysis Summary")
|
146 |
+
],
|
147 |
+
title="Real-Time Multi-Analysis App",
|
148 |
+
description=(
|
149 |
+
"This app performs real-time posture analysis, facial emotion detection, "
|
150 |
+
"object detection, and face detection using your webcam."
|
151 |
+
),
|
152 |
+
live=True
|
153 |
+
)
|
154 |
+
|
155 |
+
if __name__ == "__main__":
|
156 |
+
interface.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
torch
|
3 |
+
torchvision
|
4 |
+
opencv-python
|
5 |
+
numpy
|
6 |
+
mediapipe
|
7 |
+
Pillow
|
8 |
+
fer
|