import gradio as gr import cv2 import numpy as np import torch from torchvision import models, transforms from PIL import Image import mediapipe as mp from fer import FER # Facial emotion recognition # ----------------------------- # Initialize Models and Helpers # ----------------------------- # MediaPipe Pose for posture analysis mp_pose = mp.solutions.pose pose = mp_pose.Pose() mp_drawing = mp.solutions.drawing_utils # MediaPipe Face Detection for face detection mp_face_detection = mp.solutions.face_detection face_detection = mp_face_detection.FaceDetection(min_detection_confidence=0.5) # Object Detection Model: Faster R-CNN (pretrained on COCO) object_detection_model = models.detection.fasterrcnn_resnet50_fpn(pretrained=True) object_detection_model.eval() obj_transform = transforms.Compose([transforms.ToTensor()]) # Facial Emotion Detection using FER (this model will detect emotions from a face) emotion_detector = FER(mtcnn=True) # ----------------------------- # Define Analysis Functions # ----------------------------- def analyze_posture(frame_rgb, output_frame): """Runs pose estimation and draws landmarks on the frame.""" pose_results = pose.process(frame_rgb) posture_text = "No posture detected" if pose_results.pose_landmarks: posture_text = "Posture detected" # Draw the pose landmarks on the output image (convert back to BGR for OpenCV) mp_drawing.draw_landmarks( output_frame, pose_results.pose_landmarks, mp_pose.POSE_CONNECTIONS, mp_drawing.DrawingSpec(color=(0, 255, 0), thickness=2, circle_radius=2), mp_drawing.DrawingSpec(color=(0, 0, 255), thickness=2) ) return posture_text def analyze_emotion(frame): """Detects emotion from faces using FER. Returns the dominant emotion.""" # FER expects RGB images frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) emotions = emotion_detector.detect_emotions(frame_rgb) if emotions: # Use the first detected face and its top emotion top_emotion, score = max(emotions[0]["emotions"].items(), key=lambda x: x[1]) emotion_text = f"{top_emotion} ({score:.2f})" else: emotion_text = "No face detected for emotion analysis" return emotion_text def analyze_objects(frame_rgb, output_frame): """Performs object detection and draws bounding boxes for detections above a threshold.""" image_pil = Image.fromarray(frame_rgb) img_tensor = obj_transform(image_pil) with torch.no_grad(): detections = object_detection_model([img_tensor])[0] threshold = 0.8 detected_boxes = detections["boxes"][detections["scores"] > threshold] for box in detected_boxes: box = box.int().cpu().numpy() cv2.rectangle(output_frame, (box[0], box[1]), (box[2], box[3]), (255, 255, 0), 2) object_text = f"Detected {len(detected_boxes)} object(s)" if len(detected_boxes) else "No objects detected" return object_text def analyze_faces(frame_rgb, output_frame): """Detects faces using MediaPipe and draws bounding boxes.""" face_results = face_detection.process(frame_rgb) face_text = "No faces detected" if face_results.detections: face_text = f"Detected {len(face_results.detections)} face(s)" h, w, _ = output_frame.shape for detection in face_results.detections: bbox = detection.location_data.relative_bounding_box x = int(bbox.xmin * w) y = int(bbox.ymin * h) box_w = int(bbox.width * w) box_h = int(bbox.height * h) cv2.rectangle(output_frame, (x, y), (x + box_w, y + box_h), (0, 0, 255), 2) return face_text # ----------------------------- # Main Analysis Function # ----------------------------- def analyze_webcam(frame): """ Runs posture analysis, facial emotion analysis, object detection, and face detection on the given webcam frame. Returns an annotated image and a textual summary. """ if frame is None: return None, "No frame provided." # The input frame is in BGR (as from OpenCV). Create a copy for drawing. output_frame = frame.copy() # Convert frame to RGB for analysis frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) # Run analyses posture_result = analyze_posture(frame_rgb, output_frame) emotion_result = analyze_emotion(frame) object_result = analyze_objects(frame_rgb, output_frame) face_result = analyze_faces(frame_rgb, output_frame) # Compose the result summary text summary = ( f"Posture Analysis: {posture_result}\n" f"Emotion Analysis: {emotion_result}\n" f"Object Detection: {object_result}\n" f"Face Detection: {face_result}" ) # Optionally, overlay some of the summary text on the image cv2.putText(output_frame, f"Emotion: {emotion_result}", (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 0, 0), 2) cv2.putText(output_frame, f"Objects: {object_result}", (10, 70), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 255), 2) cv2.putText(output_frame, f"Faces: {face_result}", (10, 110), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2) return output_frame, summary # ----------------------------- # Gradio Interface Setup # ----------------------------- # We output both an image (with drawn annotations) and a text summary. interface = gr.Interface( fn=analyze_webcam, inputs=gr.Image(source="webcam", streaming=True, label="Webcam Feed"), outputs=[ gr.Image(type="numpy", label="Annotated Output"), gr.Textbox(label="Analysis Summary") ], title="Real-Time Multi-Analysis App", description=( "This app performs real-time posture analysis, facial emotion detection, " "object detection, and face detection using your webcam." ), live=True ) if __name__ == "__main__": interface.launch()