|
from fastai.vision.all import * |
|
import gradio as gr |
|
|
|
|
|
learn_caltech101 = load_learner('image_classifier_caltech101.pkl') |
|
|
|
|
|
labels = learn_caltech101.dls.vocab |
|
|
|
def predict(img): |
|
img = PILImage.create(img) |
|
pred, pred_idx, probs = learn_caltech101.predict(img) |
|
return {str(labels[i]):float(probs[i]) for i in range(len(labels))} |
|
|
|
|
|
gradio_interface = gr.Interface( |
|
title = "Caltech_101 Image Classifier", |
|
description = "A simple image classifier based on the Caltech_101 dataset.", |
|
fn=predict, |
|
inputs = gr.inputs.Image(shape=(224,224)), |
|
outputs = gr.outputs.Label(num_top_classes=5) |
|
) |
|
|
|
gradio_interface.launch(enable_queue=True) |