Spaces:
Runtime error
Runtime error
File size: 12,968 Bytes
5672777 93528c6 5672777 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 |
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Defines the base task abstraction."""
import abc
import functools
from typing import Optional
from absl import logging
import tensorflow as tf, tf_keras
from official.core import config_definitions
from official.modeling import optimization
from official.modeling import performance
from official.modeling.privacy import configs
from official.modeling.privacy import ops
OptimizationConfig = optimization.OptimizationConfig
RuntimeConfig = config_definitions.RuntimeConfig
DifferentialPrivacyConfig = configs.DifferentialPrivacyConfig
class Task(tf.Module, metaclass=abc.ABCMeta):
"""A single-replica view of training procedure.
Tasks provide artifacts for training/validation procedures, including
loading/iterating over Datasets, training/validation steps, calculating the
loss and customized metrics with reduction.
"""
# Special keys in train/validate step returned logs.
loss = "loss"
def __init__(self,
params,
logging_dir: Optional[str] = None,
name: Optional[str] = None):
"""Task initialization.
Args:
params: the task configuration instance, which can be any of dataclass,
ConfigDict, namedtuple, etc.
logging_dir: a string pointing to where the model, summaries etc. will be
saved. You can also write additional stuff in this directory.
name: the task name.
"""
super().__init__(name=name)
self._task_config = params
self._logging_dir = (
logging_dir or ""
) # Empty directory hints current working dir.
@property
def task_config(self):
return self._task_config
@property
def logging_dir(self) -> str:
return self._logging_dir
@classmethod
def create_optimizer(cls, optimizer_config: OptimizationConfig,
runtime_config: Optional[RuntimeConfig] = None,
dp_config: Optional[DifferentialPrivacyConfig] = None):
"""Creates an TF optimizer from configurations.
Args:
optimizer_config: the parameters of the Optimization settings.
runtime_config: the parameters of the runtime.
dp_config: the parameter of differential privacy.
Returns:
A tf.optimizers.Optimizer object.
"""
gradient_transformers = None
if dp_config is not None:
logging.info("Adding differential privacy transform with config %s.",
dp_config.as_dict())
noise_stddev = dp_config.clipping_norm * dp_config.noise_multiplier
gradient_transformers = [
functools.partial(
ops.clip_l2_norm, l2_norm_clip=dp_config.clipping_norm),
functools.partial(
ops.add_noise, noise_stddev=noise_stddev)
]
opt_factory = optimization.OptimizerFactory(optimizer_config)
optimizer = opt_factory.build_optimizer(
opt_factory.build_learning_rate(),
gradient_transformers=gradient_transformers
)
# Configuring optimizer when loss_scale is set in runtime config. This helps
# avoiding overflow/underflow for float16 computations.
if runtime_config:
optimizer = performance.configure_optimizer(
optimizer,
use_float16=runtime_config.mixed_precision_dtype == "float16",
loss_scale=runtime_config.loss_scale)
return optimizer
def initialize(self, model: tf_keras.Model):
"""[Optional] A callback function used as CheckpointManager's init_fn.
This function will be called when no checkpoint is found for the model.
If there is a checkpoint, the checkpoint will be loaded and this function
will not be called. You can use this callback function to load a pretrained
checkpoint, saved under a directory other than the model_dir.
Args:
model: The keras.Model built or used by this task.
"""
ckpt_dir_or_file = self.task_config.init_checkpoint
logging.info("Trying to load pretrained checkpoint from %s",
ckpt_dir_or_file)
if ckpt_dir_or_file and tf.io.gfile.isdir(ckpt_dir_or_file):
ckpt_dir_or_file = tf.train.latest_checkpoint(ckpt_dir_or_file)
if not ckpt_dir_or_file:
logging.info("No checkpoint file found from %s. Will not load.",
ckpt_dir_or_file)
return
if hasattr(model, "checkpoint_items"):
checkpoint_items = model.checkpoint_items
else:
checkpoint_items = dict(model=model)
ckpt = tf.train.Checkpoint(**checkpoint_items)
status = ckpt.read(ckpt_dir_or_file)
status.expect_partial().assert_existing_objects_matched()
logging.info("Finished loading pretrained checkpoint from %s",
ckpt_dir_or_file)
def build_model(self) -> tf_keras.Model:
"""[Optional] Creates model architecture.
Returns:
A model instance.
""" # pytype: disable=bad-return-type # typed-keras
@abc.abstractmethod
def build_inputs(self,
params,
input_context: Optional[tf.distribute.InputContext] = None):
"""Returns a dataset or a nested structure of dataset functions.
Dataset functions define per-host datasets with the per-replica batch size.
With distributed training, this method runs on remote hosts.
Args:
params: hyperparams to create input pipelines, which can be any of
dataclass, ConfigDict, namedtuple, etc.
input_context: optional distribution input pipeline context.
Returns:
A nested structure of per-replica input functions.
"""
def build_losses(self, labels, model_outputs, aux_losses=None) -> tf.Tensor:
"""Standard interface to compute losses.
Args:
labels: optional label tensors.
model_outputs: a nested structure of output tensors.
aux_losses: auxiliary loss tensors, i.e. `losses` in keras.Model.
Returns:
The total loss tensor.
"""
del model_outputs, labels
if aux_losses is None:
losses = [tf.constant(0.0, dtype=tf.float32)]
else:
losses = aux_losses
total_loss = tf.add_n(losses)
return total_loss
def build_metrics(self, training: bool = True):
"""Gets streaming metrics for training/validation."""
del training
return []
def process_metrics(self, metrics, labels, model_outputs, **kwargs):
"""Process and update metrics.
Called when using custom training loop API.
Args:
metrics: a nested structure of metrics objects. The return of function
self.build_metrics.
labels: a tensor or a nested structure of tensors.
model_outputs: a tensor or a nested structure of tensors. For example,
output of the keras model built by self.build_model.
**kwargs: other args.
"""
for metric in metrics:
metric.update_state(labels, model_outputs)
def process_compiled_metrics(self, compiled_metrics, labels, model_outputs):
"""Process and update compiled_metrics.
call when using compile/fit API.
Args:
compiled_metrics: the compiled metrics (model.compiled_metrics).
labels: a tensor or a nested structure of tensors.
model_outputs: a tensor or a nested structure of tensors. For example,
output of the keras model built by self.build_model.
"""
compiled_metrics.update_state(labels, model_outputs)
def train_step(self,
inputs,
model: tf_keras.Model,
optimizer: tf_keras.optimizers.Optimizer,
metrics=None):
"""Does forward and backward.
With distribution strategies, this method runs on devices.
Args:
inputs: a dictionary of input tensors.
model: the model, forward pass definition.
optimizer: the optimizer for this training step.
metrics: a nested structure of metrics objects.
Returns:
A dictionary of logs.
"""
if isinstance(inputs, tuple) and len(inputs) == 2:
features, labels = inputs
else:
features, labels = inputs, inputs
with tf.GradientTape() as tape:
outputs = model(features, training=True)
# Computes per-replica loss.
if model.compiled_loss:
loss = model.compiled_loss(
labels, outputs, regularization_losses=model.losses)
loss += self.build_losses(
labels=labels, model_outputs=outputs, aux_losses=None)
else:
loss = self.build_losses(
labels=labels, model_outputs=outputs, aux_losses=model.losses)
# Scales loss as the default gradients allreduce performs sum inside the
# optimizer.
scaled_loss = loss / tf.distribute.get_strategy().num_replicas_in_sync
# For mixed precision, when a LossScaleOptimizer is used, the loss is
# scaled to avoid numeric underflow.
if isinstance(optimizer,
tf_keras.mixed_precision.LossScaleOptimizer):
scaled_loss = optimizer.get_scaled_loss(scaled_loss)
tvars = model.trainable_variables
grads = tape.gradient(scaled_loss, tvars)
if isinstance(optimizer,
tf_keras.mixed_precision.LossScaleOptimizer):
grads = optimizer.get_unscaled_gradients(grads)
optimizer.apply_gradients(list(zip(grads, tvars)))
logs = {self.loss: loss}
if metrics:
self.process_metrics(metrics, labels, outputs)
if model.compiled_metrics:
self.process_compiled_metrics(model.compiled_metrics, labels, outputs)
logs.update({m.name: m.result() for m in metrics or []})
logs.update({m.name: m.result() for m in model.metrics})
return logs
def validation_step(self, inputs, model: tf_keras.Model, metrics=None):
"""Validation step.
With distribution strategies, this method runs on devices.
Args:
inputs: a dictionary of input tensors.
model: the keras.Model.
metrics: a nested structure of metrics objects.
Returns:
A dictionary of logs.
"""
if isinstance(inputs, tuple) and len(inputs) == 2:
features, labels = inputs
else:
features, labels = inputs, inputs
outputs = self.inference_step(features, model)
loss = self.build_losses(
labels=labels, model_outputs=outputs, aux_losses=model.losses)
logs = {self.loss: loss}
if metrics:
self.process_metrics(metrics, labels, outputs)
if model.compiled_metrics:
self.process_compiled_metrics(model.compiled_metrics, labels, outputs)
logs.update({m.name: m.result() for m in metrics or []})
logs.update({m.name: m.result() for m in model.metrics})
return logs
def inference_step(self, inputs, model: tf_keras.Model):
"""Performs the forward step.
With distribution strategies, this method runs on devices.
Args:
inputs: a dictionary of input tensors.
model: the keras.Model.
Returns:
Model outputs.
"""
return model(inputs, training=False)
def aggregate_logs(self, state, step_logs):
"""Optional aggregation over logs returned from a validation step.
Given step_logs from a validation step, this function aggregates the logs
after each eval_step() (see eval_reduce() function in
official/core/base_trainer.py). It runs on CPU and can be used to aggregate
metrics during validation, when there are too many metrics that cannot fit
into TPU memory. Note that this may increase latency due to data transfer
between TPU and CPU. Also, the step output from a validation step may be a
tuple with elements from replicas, and a concatenation of the elements is
needed in such case.
Args:
state: The current state of training, for example, it can be a sequence of
metrics.
step_logs: Logs from a validation step. Can be a dictionary.
"""
pass
def reduce_aggregated_logs(self,
aggregated_logs,
global_step: Optional[tf.Tensor] = None):
"""Optional reduce of aggregated logs over validation steps.
This function reduces aggregated logs at the end of validation, and can be
used to compute the final metrics. It runs on CPU and in each eval_end() in
base trainer (see eval_end() function in official/core/base_trainer.py).
Args:
aggregated_logs: Aggregated logs over multiple validation steps.
global_step: An optional variable of global step.
Returns:
A dictionary of reduced results.
"""
return {}
|