Spaces:
Runtime error
Runtime error
File size: 3,184 Bytes
5672777 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 |
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""File writer functions for dataset preparation, infra validation, and unit tests."""
import io
from typing import Optional, Sequence, Union
import tensorflow as tf, tf_keras
def write_small_dataset(examples: Sequence[Union[tf.train.Example,
tf.train.SequenceExample]],
output_path: str,
file_type: str = 'tfrecord') -> None:
"""Writes `examples` to a file at `output_path` with type `file_type`.
CAVEAT: This function is not recommended for writing large datasets, since it
will loop through `examples` and perform write operation sequentially.
Args:
examples: List of tf.train.Example or tf.train.SequenceExample.
output_path: Output path for the dataset.
file_type: A string indicating the file format, could be: 'tfrecord',
'tfrecords', 'tfrecord_compressed', 'tfrecords_gzip', 'riegeli'. The
string is case insensitive.
"""
file_type = file_type.lower()
if file_type == 'tfrecord' or file_type == 'tfrecords':
_write_tfrecord(examples, output_path)
elif file_type == 'tfrecord_compressed' or file_type == 'tfrecords_gzip':
_write_tfrecord(examples, output_path,
tf.io.TFRecordOptions(compression_type='GZIP'))
elif file_type == 'riegeli':
_write_riegeli(examples, output_path)
else:
raise ValueError(f'Unknown file_type: {file_type}')
def _write_tfrecord(examples: Sequence[Union[tf.train.Example,
tf.train.SequenceExample]],
output_path: str,
options: Optional[tf.io.TFRecordOptions] = None) -> None:
"""Writes `examples` to a TFRecord file at `output_path`.
Args:
examples: A list of tf.train.Example.
output_path: Output path for the dataset.
options: Options used for manipulating TFRecord files.
"""
with tf.io.TFRecordWriter(output_path, options) as writer:
for example in examples:
writer.write(example.SerializeToString())
def _write_riegeli(examples: Sequence[Union[tf.train.Example,
tf.train.SequenceExample]],
output_path: str) -> None:
"""Writes `examples` to a Riegeli file at `output_path`.
Args:
examples: A list of tf.train.Example.
output_path: Output path for the dataset.
"""
with io.FileIO(output_path, 'wb') as fileio:
import riegeli # pylint: disable=g-import-not-at-top
with riegeli.RecordWriter(fileio) as writer:
writer.write_messages(examples)
|