Spaces:
Runtime error
Runtime error
File size: 3,949 Bytes
5672777 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 |
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Registry utility."""
def register(registered_collection, reg_key):
"""Register decorated function or class to collection.
Register decorated function or class into registered_collection, in a
hierarchical order. For example, when reg_key="my_model/my_exp/my_config_0"
the decorated function or class is stored under
registered_collection["my_model"]["my_exp"]["my_config_0"].
This decorator is supposed to be used together with the lookup() function in
this file.
Args:
registered_collection: a dictionary. The decorated function or class will be
put into this collection.
reg_key: The key for retrieving the registered function or class. If reg_key
is a string, it can be hierarchical like my_model/my_exp/my_config_0
Returns:
A decorator function
Raises:
KeyError: when function or class to register already exists.
"""
def decorator(fn_or_cls):
"""Put fn_or_cls in the dictionary."""
if isinstance(reg_key, str):
hierarchy = reg_key.split("/")
collection = registered_collection
for h_idx, entry_name in enumerate(hierarchy[:-1]):
if entry_name not in collection:
collection[entry_name] = {}
collection = collection[entry_name]
if not isinstance(collection, dict):
raise KeyError(
"Collection path {} at position {} already registered as "
"a function or class.".format(entry_name, h_idx))
leaf_reg_key = hierarchy[-1]
else:
collection = registered_collection
leaf_reg_key = reg_key
if leaf_reg_key in collection:
raise KeyError("Function or class {} registered multiple times.".format(
leaf_reg_key))
collection[leaf_reg_key] = fn_or_cls
return fn_or_cls
return decorator
def lookup(registered_collection, reg_key):
"""Lookup and return decorated function or class in the collection.
Lookup decorated function or class in registered_collection, in a
hierarchical order. For example, when
reg_key="my_model/my_exp/my_config_0",
this function will return
registered_collection["my_model"]["my_exp"]["my_config_0"].
Args:
registered_collection: a dictionary. The decorated function or class will be
retrieved from this collection.
reg_key: The key for retrieving the registered function or class. If reg_key
is a string, it can be hierarchical like my_model/my_exp/my_config_0
Returns:
The registered function or class.
Raises:
LookupError: when reg_key cannot be found.
"""
if isinstance(reg_key, str):
hierarchy = reg_key.split("/")
collection = registered_collection
for h_idx, entry_name in enumerate(hierarchy):
if entry_name not in collection:
raise LookupError(
f"collection path {entry_name} at position {h_idx} is never "
f"registered. Please make sure the {entry_name} and its library is "
"imported and linked to the trainer binary.")
collection = collection[entry_name]
return collection
else:
if reg_key not in registered_collection:
raise LookupError(
f"registration key {reg_key} is never "
f"registered. Please make sure the {reg_key} and its library is "
"imported and linked to the trainer binary.")
return registered_collection[reg_key]
|