File size: 9,859 Bytes
5672777
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Custom checkpoint manager that also exports saved models."""

import os
import re
import time
from typing import Callable, List, Mapping, Optional, Union

from absl import logging
import tensorflow as tf, tf_keras

SAVED_MODULES_PATH_SUFFIX = 'saved_modules'


def make_saved_modules_directory_name(checkpoint_name: str) -> str:
  return f'{checkpoint_name}_{SAVED_MODULES_PATH_SUFFIX}'


class SavedModelCheckpointManager(tf.train.CheckpointManager):
  """A CheckpointManager that also exports `SavedModel`s."""

  def __init__(self,
               checkpoint: tf.train.Checkpoint,
               directory: str,
               max_to_keep: int,
               modules_to_export: Optional[Mapping[str, tf.Module]] = None,
               keep_checkpoint_every_n_hours: Optional[int] = None,
               checkpoint_name: str = 'ckpt',
               step_counter: Optional[tf.Variable] = None,
               checkpoint_interval: Optional[int] = None,
               init_fn: Optional[Callable[[], None]] = None):
    """See base class."""
    super().__init__(
        checkpoint=checkpoint,
        directory=directory,
        max_to_keep=max_to_keep,
        keep_checkpoint_every_n_hours=keep_checkpoint_every_n_hours,
        checkpoint_name=checkpoint_name,
        step_counter=step_counter,
        checkpoint_interval=checkpoint_interval,
        init_fn=init_fn)
    self._modules_to_export = modules_to_export
    self._savedmodels = self.get_existing_savedmodels()

  def save(self,
           checkpoint_number: Optional[int] = None,
           check_interval: bool = True,
           options: Optional[tf.train.CheckpointOptions] = None):
    """See base class."""
    checkpoint_path = super().save(
        checkpoint_number=checkpoint_number,
        check_interval=check_interval,
        options=options)
    if not checkpoint_path:  # Nothing got written.
      return
    if not self._modules_to_export:  # No modules to export.
      logging.info('Skip saving SavedModel due to empty modules_to_export.')
      return checkpoint_path

    # Save the models for the checkpoint that just got written.
    saved_modules_directory = make_saved_modules_directory_name(checkpoint_path)
    # Atomic export of SavedModel. Write into a temporary direcotory and then
    # rename as the final direcotory after finishing the writing.
    # This can avoid trying to read an unfinished savedmodel.
    saved_modules_directory_tmp = saved_modules_directory + '_temp'
    for model_name, model in self._modules_to_export.items():
      signatures = getattr(model, 'saved_model_signatures', None)
      if signatures is not None:
        tf.saved_model.save(
            obj=model,
            export_dir=os.path.join(saved_modules_directory_tmp, model_name),
            signatures=signatures)
    if tf.io.gfile.exists(saved_modules_directory_tmp):
      tf.io.gfile.rename(saved_modules_directory_tmp, saved_modules_directory)

    saved_modules_directories_to_keep = [
        make_saved_modules_directory_name(ckpt) for ckpt in self.checkpoints
    ]
    existing_saved_modules_dirs = self.get_existing_savedmodels()

    self._savedmodels = []
    # Keep savedmodels in the same order as checkpoints (from oldest to newest).
    for saved_modules_dir_to_keep in saved_modules_directories_to_keep:
      if saved_modules_dir_to_keep in existing_saved_modules_dirs:
        self._savedmodels.append(saved_modules_dir_to_keep)

    for existing_saved_modules_dir in existing_saved_modules_dirs:
      if existing_saved_modules_dir not in self._savedmodels:
        tf.io.gfile.rmtree(existing_saved_modules_dir)

    return checkpoint_path

  def get_existing_savedmodels(self) -> List[str]:
    """Gets a list of all existing SavedModel paths in `directory`.

    Returns:
      A list of all existing SavedModel paths.
    """
    saved_modules_glob = make_saved_modules_directory_name(
        self._checkpoint_prefix + '-*')
    savedmodels = tf.io.gfile.glob(saved_modules_glob)
    # Filter out temporary savedmodel.
    savedmodels = [
        savedmodel
        for savedmodel in savedmodels
        if savedmodel.endswith(SAVED_MODULES_PATH_SUFFIX)
    ]
    return savedmodels

  @property
  def latest_savedmodel(self) -> Union[str, None]:
    """The path of the most recent SavedModel in `directory`.

    Returns:
      The latest SavedModel path. If there are no SavedModels, returns `None`.
    """
    if self._savedmodels:
      return self._savedmodels[-1]
    return None

  @property
  def savedmodels(self) -> List[str]:
    """A list of managed SavedModels.

    Returns:
      A list of SavedModel paths, sorted from oldest to newest.
    """
    return self._savedmodels

  @property
  def modules_to_export(self) -> Union[Mapping[str, tf.Module], None]:
    return self._modules_to_export

  def get_savedmodel_number_from_path(self,
                                      savedmodel_path: str) -> Union[int, None]:
    """Gets the savedmodel_number/checkpoint_number from savedmodel filepath.

    The savedmodel_number is global step when using with orbit controller.

    Args:
      savedmodel_path: savedmodel directory path.

    Returns:
      Savedmodel number or None if no matched pattern found in savedmodel path.
    """
    pattern = rf'\d+_{SAVED_MODULES_PATH_SUFFIX}$'
    savedmodel_number = re.search(pattern, savedmodel_path)
    if savedmodel_number:
      savedmodel_number = savedmodel_number.group()
      return int(savedmodel_number[:-len(SAVED_MODULES_PATH_SUFFIX) - 1])
    return None

  def savedmodels_iterator(self,
                           min_interval_secs: float = 0,
                           timeout: Optional[float] = None,
                           timeout_fn: Optional[Callable[[], bool]] = None):
    """Continuously yield new SavedModel files as they appear.

    The iterator only checks for new savedmodels when control flow has been
    reverted to it. The logic is same to the `train.checkpoints_iterator`.

    Args:
      min_interval_secs: The minimum number of seconds between yielding
        savedmodels.
      timeout: The maximum number of seconds to wait between savedmodels. If
        left as `None`, then the process will wait indefinitely.
      timeout_fn: Optional function to call after a timeout.  If the function
        returns True, then it means that no new savedmodels will be generated
        and the iterator will exit.  The function is called with no arguments.

    Yields:
      String paths to latest SavedModel files as they arrive.
    """
    savedmodel_path = None
    while True:
      new_savedmodel_path = self.wait_for_new_savedmodel(
          savedmodel_path, timeout=timeout)
      if new_savedmodel_path is None:
        if not timeout_fn:
          # timed out
          logging.info('Timed-out waiting for a savedmodel.')
          return
        if timeout_fn():
          # The timeout_fn indicated that we are truly done.
          return
        else:
          # The timeout_fn indicated that more savedmodels may come.
          continue
      start = time.time()
      savedmodel_path = new_savedmodel_path
      yield savedmodel_path
      time_to_next_eval = start + min_interval_secs - time.time()
      if time_to_next_eval > 0:
        time.sleep(time_to_next_eval)

  def wait_for_new_savedmodel(
      self,
      last_savedmodel: Optional[str] = None,
      seconds_to_sleep: float = 1.0,
      timeout: Optional[float] = None) -> Union[str, None]:
    """Waits until a new savedmodel file is found.

    Args:
      last_savedmodel: The last savedmodel path used or `None` if we're
        expecting a savedmodel for the first time.
      seconds_to_sleep: The number of seconds to sleep for before looking for a
        new savedmodel.
      timeout: The maximum number of seconds to wait. If left as `None`, then
        the process will wait indefinitely.

    Returns:
      A new savedmodel path, or None if the timeout was reached.
    """
    logging.info('Waiting for new savedmodel at %s', self._directory)
    stop_time = time.time() + timeout if timeout is not None else None

    last_savedmodel_number = -1
    if last_savedmodel:
      last_savedmodel_number = self.get_savedmodel_number_from_path(
          last_savedmodel)

    while True:
      if stop_time is not None and time.time() + seconds_to_sleep > stop_time:
        return None

      existing_savedmodels = {}
      for savedmodel_path in self.get_existing_savedmodels():
        savedmodel_number = self.get_savedmodel_number_from_path(
            savedmodel_path)
        if savedmodel_number is not None:
          existing_savedmodels[savedmodel_number] = savedmodel_path

      # Find the first savedmodel with larger step number as next savedmodel.
      savedmodel_path = None
      existing_savedmodels = dict(sorted(existing_savedmodels.items()))
      for savedmodel_number in existing_savedmodels:
        if savedmodel_number > last_savedmodel_number:
          savedmodel_path = existing_savedmodels[savedmodel_number]
          break

      if savedmodel_path:
        logging.info('Found new savedmodel at %s', savedmodel_path)
        return savedmodel_path
      else:
        time.sleep(seconds_to_sleep)