Spaces:
Runtime error
Runtime error
File size: 4,633 Bytes
5672777 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 |
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Builder class for preparing tf.train.Example."""
# https://www.python.org/dev/peps/pep-0563/#enabling-the-future-behavior-in-python-3-7
from __future__ import annotations
from typing import Mapping, Sequence, Union
import numpy as np
import tensorflow as tf, tf_keras
BytesValueType = Union[bytes, Sequence[bytes], str, Sequence[str]]
_to_array = lambda v: [v] if not isinstance(v, (list, np.ndarray)) else v
_to_bytes = lambda v: v.encode() if isinstance(v, str) else v
_to_bytes_array = lambda v: list(map(_to_bytes, _to_array(v)))
class TfExampleBuilder(object):
"""Builder class for preparing tf.train.Example.
Read API doc at https://www.tensorflow.org/api_docs/python/tf/train/Example.
Example usage:
>>> example_builder = TfExampleBuilder()
>>> example = (
example_builder.add_bytes_feature('feature_a', 'foobarbaz')
.add_ints_feature('feature_b', [1, 2, 3])
.example)
"""
def __init__(self) -> None:
self._example = tf.train.Example()
@property
def example(self) -> tf.train.Example:
"""Returns a copy of the generated tf.train.Example proto."""
return self._example
@property
def serialized_example(self) -> str:
"""Returns a serialized string of the generated tf.train.Example proto."""
return self._example.SerializeToString()
def set(self, example: tf.train.Example) -> TfExampleBuilder:
"""Sets the example."""
self._example = example
return self
def reset(self) -> TfExampleBuilder:
"""Resets the example to an empty proto."""
self._example = tf.train.Example()
return self
###### Basic APIs for primitive data types ######
def add_feature_dict(
self, feature_dict: Mapping[str, tf.train.Feature]) -> TfExampleBuilder:
"""Adds the predefined `feature_dict` to the example.
Note: Please prefer to using feature-type-specific methods.
Args:
feature_dict: A dictionary from tf.Example feature key to
tf.train.Feature.
Returns:
The builder object for subsequent method calls.
"""
for k, v in feature_dict.items():
self._example.features.feature[k].CopyFrom(v)
return self
def add_feature(self, key: str,
feature: tf.train.Feature) -> TfExampleBuilder:
"""Adds predefined `feature` with `key` to the example.
Args:
key: String key of the feature.
feature: The feature to be added to the example.
Returns:
The builder object for subsequent method calls.
"""
self._example.features.feature[key].CopyFrom(feature)
return self
def add_bytes_feature(self, key: str,
value: BytesValueType) -> TfExampleBuilder:
"""Adds byte(s) or string(s) with `key` to the example.
Args:
key: String key of the feature.
value: The byte(s) or string(s) to be added to the example.
Returns:
The builder object for subsequent method calls.
"""
return self.add_feature(
key,
tf.train.Feature(
bytes_list=tf.train.BytesList(value=_to_bytes_array(value))))
def add_ints_feature(self, key: str,
value: Union[int, Sequence[int]]) -> TfExampleBuilder:
"""Adds integer(s) with `key` to the example.
Args:
key: String key of the feature.
value: The integer(s) to be added to the example.
Returns:
The builder object for subsequent method calls.
"""
return self.add_feature(
key,
tf.train.Feature(int64_list=tf.train.Int64List(value=_to_array(value))))
def add_floats_feature(
self, key: str, value: Union[float, Sequence[float]]) -> TfExampleBuilder:
"""Adds float(s) with `key` to the example.
Args:
key: String key of the feature.
value: The float(s) to be added to the example.
Returns:
The builder object for subsequent method calls.
"""
return self.add_feature(
key,
tf.train.Feature(float_list=tf.train.FloatList(value=_to_array(value))))
|