Spaces:
Runtime error
Runtime error
File size: 9,298 Bytes
5672777 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 |
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for the progressive trainer."""
# pylint: disable=g-direct-tensorflow-import
import os
from absl.testing import parameterized
import orbit
import tensorflow as tf, tf_keras
from tensorflow.python.distribute import combinations
from tensorflow.python.distribute import strategy_combinations
from official.core import config_definitions as cfg
from official.modeling import optimization
from official.modeling.fast_training.progressive import policies
from official.modeling.fast_training.progressive import trainer as trainer_lib
from official.nlp.configs import bert
from official.utils.testing import mock_task
def all_strategy_combinations():
return combinations.combine(
distribution=[
strategy_combinations.default_strategy,
strategy_combinations.cloud_tpu_strategy,
strategy_combinations.one_device_strategy_gpu,
],)
def get_exp_config():
return cfg.ExperimentConfig(
task=cfg.TaskConfig(
model=bert.PretrainerConfig()),
trainer=trainer_lib.ProgressiveTrainerConfig(
export_checkpoint=True,
export_checkpoint_interval=1,
export_only_final_stage_ckpt=False))
class TestPolicy(policies.ProgressivePolicy, mock_task.MockTask):
"""Just for testing purposes."""
def __init__(self, strategy, task_config, change_train_dataset=True):
self._strategy = strategy
self._change_train_dataset = change_train_dataset
self._my_train_dataset = None
mock_task.MockTask.__init__(self, params=task_config, logging_dir=None)
policies.ProgressivePolicy.__init__(self)
def num_stages(self) -> int:
return 2
def num_steps(self, stage_id: int) -> int:
return 2 if stage_id == 0 else 4
def get_model(self,
stage_id: int,
old_model: tf_keras.Model) -> tf_keras.Model:
del stage_id, old_model
return self.build_model()
def get_optimizer(self, stage_id: int) -> tf_keras.optimizers.Optimizer:
optimizer_type = 'sgd' if stage_id == 0 else 'adamw'
optimizer_config = cfg.OptimizationConfig({
'optimizer': {'type': optimizer_type},
'learning_rate': {'type': 'constant'}})
opt_factory = optimization.OptimizerFactory(optimizer_config)
return opt_factory.build_optimizer(opt_factory.build_learning_rate())
def get_train_dataset(self, stage_id: int) -> tf.data.Dataset:
if not self._change_train_dataset and self._my_train_dataset:
return self._my_train_dataset
if self._strategy:
self._my_train_dataset = orbit.utils.make_distributed_dataset(
self._strategy,
self._build_inputs,
stage_id)
else:
self._my_train_dataset = self._build_inputs(stage_id)
return self._my_train_dataset
def get_eval_dataset(self, stage_id: int) -> tf.data.Dataset:
if self._strategy:
return orbit.utils.make_distributed_dataset(
self._strategy,
self._build_inputs,
stage_id)
return self._build_inputs(stage_id)
def _build_inputs(self, stage_id):
def dummy_data(_):
batch_size = 2 if stage_id == 0 else 1
x = tf.zeros(shape=(batch_size, 2), dtype=tf.float32)
label = tf.zeros(shape=(batch_size, 1), dtype=tf.float32)
return x, label
dataset = tf.data.Dataset.range(1)
dataset = dataset.repeat()
return dataset.map(
dummy_data, num_parallel_calls=tf.data.experimental.AUTOTUNE)
class TrainerTest(tf.test.TestCase, parameterized.TestCase):
def setUp(self):
super(TrainerTest, self).setUp()
self._config = get_exp_config()
def create_test_trainer(self, distribution, model_dir, change_train_dataset):
trainer = trainer_lib.ProgressiveTrainer(
self._config,
prog_task=TestPolicy(
distribution, self._config.task, change_train_dataset),
ckpt_dir=model_dir)
return trainer
@combinations.generate(all_strategy_combinations())
def test_checkpointing(self, distribution):
model_dir = self.get_temp_dir()
ckpt_file = os.path.join(model_dir, 'ckpt')
with distribution.scope():
trainer = self.create_test_trainer(distribution, model_dir, True)
self.assertFalse(trainer._task.is_last_stage)
trainer.train(tf.convert_to_tensor(4, dtype=tf.int32))
self.assertTrue(trainer._task.is_last_stage)
trainer.checkpoint.save(ckpt_file)
trainer = self.create_test_trainer(distribution, model_dir, True)
self.assertFalse(trainer._task.is_last_stage)
trainer.checkpoint.restore(ckpt_file + '-1')
self.assertTrue(trainer._task.is_last_stage)
@combinations.generate(all_strategy_combinations())
def test_train_dataset(self, distribution):
model_dir = self.get_temp_dir()
with distribution.scope():
trainer = self.create_test_trainer(distribution, model_dir, True)
# Using dataset of stage == 0
train_iter = tf.nest.map_structure(iter, trainer.train_dataset)
train_data = train_iter.next()[0]
if distribution.num_replicas_in_sync > 1:
train_data = train_data.values[0]
self.assertEqual(train_data.shape[0], 2)
trainer.train(tf.convert_to_tensor(4, dtype=tf.int32))
# Using dataset of stage == 1
train_iter = tf.nest.map_structure(iter, trainer.train_dataset)
train_data = train_iter.next()[0]
if distribution.num_replicas_in_sync > 1:
train_data = train_data.values[0]
self.assertEqual(train_data.shape[0], 1)
with self.assertRaises(SyntaxError):
trainer.train_dataset = None
@combinations.generate(all_strategy_combinations())
def test_train_dataset_no_switch(self, distribution):
model_dir = self.get_temp_dir()
with distribution.scope():
trainer = self.create_test_trainer(distribution, model_dir, False)
trainer.train(tf.convert_to_tensor(2, dtype=tf.int32))
# _train_iter is not reset since the dataset is not changed.
self.assertIsNotNone(trainer._train_iter)
with distribution.scope():
trainer = self.create_test_trainer(distribution, model_dir, True)
trainer.train(tf.convert_to_tensor(2, dtype=tf.int32))
# _train_iter is reset since the dataset changed.
self.assertIsNone(trainer._train_iter)
class TrainerWithMaskedLMTaskTest(tf.test.TestCase, parameterized.TestCase):
def setUp(self):
super(TrainerWithMaskedLMTaskTest, self).setUp()
self._config = get_exp_config()
def create_test_trainer(self, distribution):
trainer = trainer_lib.ProgressiveTrainer(
self._config,
prog_task=TestPolicy(distribution, self._config.task),
ckpt_dir=self.get_temp_dir())
return trainer
@combinations.generate(all_strategy_combinations())
def test_trainer_train(self, distribution):
with distribution.scope():
trainer = self.create_test_trainer(distribution)
logs = trainer.train(tf.convert_to_tensor(5, dtype=tf.int32))
self.assertIn('training_loss', logs)
self.assertIn('learning_rate', logs)
@combinations.generate(all_strategy_combinations())
def test_trainer_validate(self, distribution):
with distribution.scope():
trainer = self.create_test_trainer(distribution)
logs = trainer.evaluate(tf.convert_to_tensor(5, dtype=tf.int32))
self.assertIn('validation_loss', logs)
self.assertEqual(logs['counter'], 5. * distribution.num_replicas_in_sync)
@combinations.generate(
combinations.combine(
mixed_precision_dtype=['float32', 'bfloat16', 'float16'],
loss_scale=[None, 'dynamic', 128, 256],
))
def test_configure_optimizer(self, mixed_precision_dtype, loss_scale):
config = cfg.ExperimentConfig(
task=cfg.TaskConfig(
model=bert.PretrainerConfig()),
runtime=cfg.RuntimeConfig(
mixed_precision_dtype=mixed_precision_dtype, loss_scale=loss_scale),
trainer=trainer_lib.ProgressiveTrainerConfig(
export_checkpoint=True,
export_checkpoint_interval=1,
export_only_final_stage_ckpt=False))
task = TestPolicy(None, config.task)
trainer = trainer_lib.ProgressiveTrainer(config, task, self.get_temp_dir())
if mixed_precision_dtype != 'float16':
self.assertIsInstance(
trainer.optimizer,
(tf_keras.optimizers.SGD, tf_keras.optimizers.legacy.SGD))
elif mixed_precision_dtype == 'float16' and loss_scale is None:
self.assertIsInstance(
trainer.optimizer,
(tf_keras.optimizers.SGD, tf_keras.optimizers.legacy.SGD))
metrics = trainer.train(tf.convert_to_tensor(5, dtype=tf.int32))
self.assertIn('training_loss', metrics)
if __name__ == '__main__':
tf.test.main()
|