Spaces:
Runtime error
Runtime error
File size: 6,413 Bytes
5672777 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 |
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""BERT library to process data for cross lingual sentence retrieval task."""
import os
from absl import logging
from official.nlp.data import classifier_data_lib
from official.nlp.tools import tokenization
class BuccProcessor(classifier_data_lib.DataProcessor):
"""Procssor for Xtreme BUCC data set."""
supported_languages = ["de", "fr", "ru", "zh"]
def __init__(self, process_text_fn=tokenization.convert_to_unicode):
super(BuccProcessor, self).__init__(process_text_fn)
self.languages = BuccProcessor.supported_languages
def get_dev_examples(self, data_dir, file_pattern):
return self._create_examples(
self._read_tsv(os.path.join(data_dir, file_pattern.format("dev"))),
"sample")
def get_test_examples(self, data_dir, file_pattern):
return self._create_examples(
self._read_tsv(os.path.join(data_dir, file_pattern.format("test"))),
"test")
@staticmethod
def get_processor_name():
"""See base class."""
return "BUCC"
def _create_examples(self, lines, set_type):
"""Creates examples for the training and dev sets."""
examples = []
for (i, line) in enumerate(lines):
guid = "%s-%s" % (set_type, i)
example_id = int(line[0].split("-")[1])
text_a = self.process_text_fn(line[1])
examples.append(
classifier_data_lib.InputExample(
guid=guid, text_a=text_a, example_id=example_id))
return examples
class TatoebaProcessor(classifier_data_lib.DataProcessor):
"""Procssor for Xtreme Tatoeba data set."""
supported_languages = [
"af", "ar", "bg", "bn", "de", "el", "es", "et", "eu", "fa", "fi", "fr",
"he", "hi", "hu", "id", "it", "ja", "jv", "ka", "kk", "ko", "ml", "mr",
"nl", "pt", "ru", "sw", "ta", "te", "th", "tl", "tr", "ur", "vi", "zh"
]
def __init__(self, process_text_fn=tokenization.convert_to_unicode):
super(TatoebaProcessor, self).__init__(process_text_fn)
self.languages = TatoebaProcessor.supported_languages
def get_test_examples(self, data_dir, file_path):
return self._create_examples(
self._read_tsv(os.path.join(data_dir, file_path)), "test")
@staticmethod
def get_processor_name():
"""See base class."""
return "TATOEBA"
def _create_examples(self, lines, set_type):
"""Creates examples for the training and dev sets."""
examples = []
for (i, line) in enumerate(lines):
guid = "%s-%s" % (set_type, i)
text_a = self.process_text_fn(line[0])
examples.append(
classifier_data_lib.InputExample(
guid=guid, text_a=text_a, example_id=i))
return examples
def generate_sentence_retrevial_tf_record(processor,
data_dir,
tokenizer,
eval_data_output_path=None,
test_data_output_path=None,
max_seq_length=128):
"""Generates the tf records for retrieval tasks.
Args:
processor: Input processor object to be used for generating data. Subclass
of `DataProcessor`.
data_dir: Directory that contains train/eval data to process. Data files
should be in from.
tokenizer: The tokenizer to be applied on the data.
eval_data_output_path: Output to which processed tf record for evaluation
will be saved.
test_data_output_path: Output to which processed tf record for testing
will be saved. Must be a pattern template with {} if processor has
language specific test data.
max_seq_length: Maximum sequence length of the to be generated
training/eval data.
Returns:
A dictionary containing input meta data.
"""
assert eval_data_output_path or test_data_output_path
if processor.get_processor_name() == "BUCC":
path_pattern = "{}-en.{{}}.{}"
if processor.get_processor_name() == "TATOEBA":
path_pattern = "{}-en.{}"
meta_data = {
"processor_type": processor.get_processor_name(),
"max_seq_length": max_seq_length,
"number_eval_data": {},
"number_test_data": {},
}
logging.info("Start to process %s task data", processor.get_processor_name())
for lang_a in processor.languages:
for lang_b in [lang_a, "en"]:
if eval_data_output_path:
eval_input_data_examples = processor.get_dev_examples(
data_dir, os.path.join(path_pattern.format(lang_a, lang_b)))
num_eval_data = len(eval_input_data_examples)
logging.info("Processing %d dev examples of %s-en.%s", num_eval_data,
lang_a, lang_b)
output_file = os.path.join(
eval_data_output_path,
"{}-en-{}.{}.tfrecords".format(lang_a, lang_b, "dev"))
classifier_data_lib.file_based_convert_examples_to_features(
eval_input_data_examples, None, max_seq_length, tokenizer,
output_file, None)
meta_data["number_eval_data"][f"{lang_a}-en.{lang_b}"] = num_eval_data
if test_data_output_path:
test_input_data_examples = processor.get_test_examples(
data_dir, os.path.join(path_pattern.format(lang_a, lang_b)))
num_test_data = len(test_input_data_examples)
logging.info("Processing %d test examples of %s-en.%s", num_test_data,
lang_a, lang_b)
output_file = os.path.join(
test_data_output_path,
"{}-en-{}.{}.tfrecords".format(lang_a, lang_b, "test"))
classifier_data_lib.file_based_convert_examples_to_features(
test_input_data_examples, None, max_seq_length, tokenizer,
output_file, None)
meta_data["number_test_data"][f"{lang_a}-en.{lang_b}"] = num_test_data
return meta_data
|