Spaces:
Runtime error
Runtime error
File size: 9,910 Bytes
5672777 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 |
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for BERT pretrainer model."""
import itertools
from absl.testing import parameterized
import tensorflow as tf, tf_keras
from official.nlp.modeling import layers
from official.nlp.modeling import networks
from official.nlp.modeling.models import bert_pretrainer
class BertPretrainerTest(tf.test.TestCase, parameterized.TestCase):
def test_bert_pretrainer(self):
"""Validate that the Keras object can be created."""
# Build a transformer network to use within the BERT trainer.
vocab_size = 100
sequence_length = 512
test_network = networks.BertEncoder(
vocab_size=vocab_size,
num_layers=2,
max_sequence_length=sequence_length)
# Create a BERT trainer with the created network.
num_classes = 3
num_token_predictions = 2
bert_trainer_model = bert_pretrainer.BertPretrainer(
test_network,
num_classes=num_classes,
num_token_predictions=num_token_predictions)
# Create a set of 2-dimensional inputs (the first dimension is implicit).
word_ids = tf_keras.Input(shape=(sequence_length,), dtype=tf.int32)
mask = tf_keras.Input(shape=(sequence_length,), dtype=tf.int32)
type_ids = tf_keras.Input(shape=(sequence_length,), dtype=tf.int32)
masked_lm_positions = tf_keras.Input(
shape=(num_token_predictions,), dtype=tf.int32)
# Invoke the trainer model on the inputs. This causes the layer to be built.
outputs = bert_trainer_model(
[word_ids, mask, type_ids, masked_lm_positions])
# Validate that the outputs are of the expected shape.
expected_lm_shape = [None, num_token_predictions, vocab_size]
expected_classification_shape = [None, num_classes]
self.assertAllEqual(expected_lm_shape, outputs['masked_lm'].shape.as_list())
self.assertAllEqual(expected_classification_shape,
outputs['classification'].shape.as_list())
def test_bert_trainer_tensor_call(self):
"""Validate that the Keras object can be invoked."""
# Build a transformer network to use within the BERT trainer.
test_network = networks.BertEncoder(vocab_size=100, num_layers=2)
# Create a BERT trainer with the created network.
bert_trainer_model = bert_pretrainer.BertPretrainer(
test_network, num_classes=2, num_token_predictions=2)
# Create a set of 2-dimensional data tensors to feed into the model.
word_ids = tf.constant([[1, 1], [2, 2]], dtype=tf.int32)
mask = tf.constant([[1, 1], [1, 0]], dtype=tf.int32)
type_ids = tf.constant([[1, 1], [2, 2]], dtype=tf.int32)
lm_mask = tf.constant([[1, 1], [1, 0]], dtype=tf.int32)
# Invoke the trainer model on the tensors. In Eager mode, this does the
# actual calculation. (We can't validate the outputs, since the network is
# too complex: this simply ensures we're not hitting runtime errors.)
_ = bert_trainer_model([word_ids, mask, type_ids, lm_mask])
def test_serialize_deserialize(self):
"""Validate that the BERT trainer can be serialized and deserialized."""
# Build a transformer network to use within the BERT trainer. (Here, we use
# a short sequence_length for convenience.)
test_network = networks.BertEncoder(
vocab_size=100, num_layers=2, max_sequence_length=5)
# Create a BERT trainer with the created network. (Note that all the args
# are different, so we can catch any serialization mismatches.)
bert_trainer_model = bert_pretrainer.BertPretrainer(
test_network, num_classes=4, num_token_predictions=3)
# Create another BERT trainer via serialization and deserialization.
config = bert_trainer_model.get_config()
new_bert_trainer_model = bert_pretrainer.BertPretrainer.from_config(config)
# Validate that the config can be forced to JSON.
_ = new_bert_trainer_model.to_json()
# If the serialization was successful, the new config should match the old.
self.assertAllEqual(bert_trainer_model.get_config(),
new_bert_trainer_model.get_config())
class BertPretrainerV2Test(tf.test.TestCase, parameterized.TestCase):
@parameterized.parameters(itertools.product(
(False, True),
(False, True),
(False, True),
(False, True),
))
def test_bert_pretrainerv2(self, dict_outputs, return_all_encoder_outputs,
use_customized_masked_lm, has_masked_lm_positions):
"""Validate that the Keras object can be created."""
# Build a transformer network to use within the BERT trainer.
del dict_outputs, return_all_encoder_outputs
vocab_size = 100
sequence_length = 512
hidden_size = 48
num_layers = 2
test_network = networks.BertEncoderV2(
vocab_size=vocab_size,
num_layers=num_layers,
hidden_size=hidden_size,
max_sequence_length=sequence_length)
_ = test_network(test_network.inputs)
# Create a BERT trainer with the created network.
if use_customized_masked_lm:
customized_masked_lm = layers.MaskedLM(
embedding_table=test_network.get_embedding_table())
else:
customized_masked_lm = None
bert_trainer_model = bert_pretrainer.BertPretrainerV2(
encoder_network=test_network, customized_masked_lm=customized_masked_lm)
num_token_predictions = 20
# Create a set of 2-dimensional inputs (the first dimension is implicit).
inputs = dict(
input_word_ids=tf_keras.Input(shape=(sequence_length,), dtype=tf.int32),
input_mask=tf_keras.Input(shape=(sequence_length,), dtype=tf.int32),
input_type_ids=tf_keras.Input(shape=(sequence_length,), dtype=tf.int32))
if has_masked_lm_positions:
inputs['masked_lm_positions'] = tf_keras.Input(
shape=(num_token_predictions,), dtype=tf.int32)
# Invoke the trainer model on the inputs. This causes the layer to be built.
outputs = bert_trainer_model(inputs)
has_encoder_outputs = True # dict_outputs or return_all_encoder_outputs
expected_keys = ['sequence_output', 'pooled_output']
if has_encoder_outputs:
expected_keys.append('encoder_outputs')
if has_masked_lm_positions:
expected_keys.append('mlm_logits')
self.assertSameElements(outputs.keys(), expected_keys)
# Validate that the outputs are of the expected shape.
expected_lm_shape = [None, num_token_predictions, vocab_size]
if has_masked_lm_positions:
self.assertAllEqual(expected_lm_shape,
outputs['mlm_logits'].shape.as_list())
expected_sequence_output_shape = [None, sequence_length, hidden_size]
self.assertAllEqual(expected_sequence_output_shape,
outputs['sequence_output'].shape.as_list())
expected_pooled_output_shape = [None, hidden_size]
self.assertAllEqual(expected_pooled_output_shape,
outputs['pooled_output'].shape.as_list())
def test_multiple_cls_outputs(self):
"""Validate that the Keras object can be created."""
# Build a transformer network to use within the BERT trainer.
vocab_size = 100
sequence_length = 512
hidden_size = 48
num_layers = 2
test_network = networks.BertEncoderV2(
vocab_size=vocab_size,
num_layers=num_layers,
hidden_size=hidden_size,
max_sequence_length=sequence_length)
bert_trainer_model = bert_pretrainer.BertPretrainerV2(
encoder_network=test_network,
classification_heads=[layers.MultiClsHeads(
inner_dim=5, cls_list=[('foo', 2), ('bar', 3)])])
num_token_predictions = 20
# Create a set of 2-dimensional inputs (the first dimension is implicit).
inputs = dict(
input_word_ids=tf_keras.Input(shape=(sequence_length,), dtype=tf.int32),
input_mask=tf_keras.Input(shape=(sequence_length,), dtype=tf.int32),
input_type_ids=tf_keras.Input(shape=(sequence_length,), dtype=tf.int32),
masked_lm_positions=tf_keras.Input(
shape=(num_token_predictions,), dtype=tf.int32))
# Invoke the trainer model on the inputs. This causes the layer to be built.
outputs = bert_trainer_model(inputs)
self.assertEqual(outputs['foo'].shape.as_list(), [None, 2])
self.assertEqual(outputs['bar'].shape.as_list(), [None, 3])
def test_v2_serialize_deserialize(self):
"""Validate that the BERT trainer can be serialized and deserialized."""
# Build a transformer network to use within the BERT trainer.
test_network = networks.BertEncoderV2(vocab_size=100, num_layers=2)
# Create a BERT trainer with the created network. (Note that all the args
# are different, so we can catch any serialization mismatches.)
bert_trainer_model = bert_pretrainer.BertPretrainerV2(
encoder_network=test_network)
# Create another BERT trainer via serialization and deserialization.
config = bert_trainer_model.get_config()
new_bert_trainer_model = bert_pretrainer.BertPretrainerV2.from_config(
config)
# Validate that the config can be forced to JSON.
_ = new_bert_trainer_model.to_json()
# If the serialization was successful, the new config should match the old.
self.assertAllEqual(bert_trainer_model.get_config(),
new_bert_trainer_model.get_config())
if __name__ == '__main__':
tf.test.main()
|