File size: 25,674 Bytes
5672777
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Transformer-based BERT encoder network."""
# pylint: disable=g-classes-have-attributes

from typing import Any, Callable, Optional, Union
from absl import logging
import tensorflow as tf, tf_keras

from official.modeling import tf_utils
from official.nlp.modeling import layers

_Initializer = Union[str, tf_keras.initializers.Initializer]
_Activation = Union[str, Callable[..., Any]]

_approx_gelu = lambda x: tf_keras.activations.gelu(x, approximate=True)


@tf_keras.utils.register_keras_serializable(package='Text')
class BertEncoderV2(tf_keras.layers.Layer):
  """Bi-directional Transformer-based encoder network.

  This network implements a bi-directional Transformer-based encoder as
  described in "BERT: Pre-training of Deep Bidirectional Transformers for
  Language Understanding" (https://arxiv.org/abs/1810.04805). It includes the
  embedding lookups and transformer layers, but not the masked language model
  or classification task networks.

  The default values for this object are taken from the BERT-Base implementation
  in "BERT: Pre-training of Deep Bidirectional Transformers for Language
  Understanding".

  Args:
    vocab_size: The size of the token vocabulary.
    hidden_size: The size of the transformer hidden layers.
    num_layers: The number of transformer layers.
    num_attention_heads: The number of attention heads for each transformer. The
      hidden size must be divisible by the number of attention heads.
    max_sequence_length: The maximum sequence length that this encoder can
      consume. This determines the variable shape for positional embeddings.
    type_vocab_size: The number of types that the 'type_ids' input can take.
    inner_dim: The output dimension of the first Dense layer in a two-layer
      feedforward network for each transformer.
    inner_activation: The activation for the first Dense layer in a two-layer
      feedforward network for each transformer.
    output_dropout: Dropout probability for the post-attention and output
      dropout.
    attention_dropout: The dropout rate to use for the attention layers within
      the transformer layers.
    initializer: The initialzer to use for all weights in this encoder.
    output_range: The sequence output range, [0, output_range), by slicing the
      target sequence of the last transformer layer. `None` means the entire
      target sequence will attend to the source sequence, which yields the full
      output.
    embedding_width: The width of the word embeddings. If the embedding width is
      not equal to hidden size, embedding parameters will be factorized into two
      matrices in the shape of ['vocab_size', 'embedding_width'] and
      ['embedding_width', 'hidden_size'] ('embedding_width' is usually much
      smaller than 'hidden_size').
    embedding_layer: An optional Layer instance which will be called to generate
      embeddings for the input word IDs.
    norm_first: Whether to normalize inputs to attention and intermediate dense
      layers. If set False, output of attention and intermediate dense layers is
      normalized.
    with_dense_inputs: Whether to accept dense embeddings as the input.
    return_attention_scores: Whether to add an additional output containing the
      attention scores of all transformer layers. This will be a list of length
      `num_layers`, and each element will be in the shape [batch_size,
      num_attention_heads, seq_dim, seq_dim].
  """

  def __init__(
      self,
      vocab_size: int,
      hidden_size: int = 768,
      num_layers: int = 12,
      num_attention_heads: int = 12,
      max_sequence_length: int = 512,
      type_vocab_size: int = 16,
      inner_dim: int = 3072,
      inner_activation: _Activation = _approx_gelu,
      output_dropout: float = 0.1,
      attention_dropout: float = 0.1,
      initializer: _Initializer = tf_keras.initializers.TruncatedNormal(
          stddev=0.02),
      output_range: Optional[int] = None,
      embedding_width: Optional[int] = None,
      embedding_layer: Optional[tf_keras.layers.Layer] = None,
      norm_first: bool = False,
      with_dense_inputs: bool = False,
      return_attention_scores: bool = False,
      **kwargs):
    # Pops kwargs that are used in V1 implementation.
    if 'dict_outputs' in kwargs:
      kwargs.pop('dict_outputs')
    if 'return_all_encoder_outputs' in kwargs:
      kwargs.pop('return_all_encoder_outputs')
    if 'intermediate_size' in kwargs:
      inner_dim = kwargs.pop('intermediate_size')
    if 'activation' in kwargs:
      inner_activation = kwargs.pop('activation')
    if 'dropout_rate' in kwargs:
      output_dropout = kwargs.pop('dropout_rate')
    if 'attention_dropout_rate' in kwargs:
      attention_dropout = kwargs.pop('attention_dropout_rate')
    super().__init__(**kwargs)

    self._output_range = output_range

    activation = tf_keras.activations.get(inner_activation)
    initializer = tf_keras.initializers.get(initializer)

    if embedding_width is None:
      embedding_width = hidden_size

    if embedding_layer is None:
      self._embedding_layer = layers.OnDeviceEmbedding(
          vocab_size=vocab_size,
          embedding_width=embedding_width,
          initializer=tf_utils.clone_initializer(initializer),
          name='word_embeddings')
    else:
      self._embedding_layer = embedding_layer

    self._position_embedding_layer = layers.PositionEmbedding(
        initializer=tf_utils.clone_initializer(initializer),
        max_length=max_sequence_length,
        name='position_embedding')

    self._type_embedding_layer = layers.OnDeviceEmbedding(
        vocab_size=type_vocab_size,
        embedding_width=embedding_width,
        initializer=tf_utils.clone_initializer(initializer),
        use_one_hot=True,
        name='type_embeddings')

    self._embedding_norm_layer = tf_keras.layers.LayerNormalization(
        name='embeddings/layer_norm', axis=-1, epsilon=1e-12, dtype=tf.float32)

    self._embedding_dropout = tf_keras.layers.Dropout(
        rate=output_dropout, name='embedding_dropout')

    # We project the 'embedding' output to 'hidden_size' if it is not already
    # 'hidden_size'.
    self._embedding_projection = None
    if embedding_width != hidden_size:
      self._embedding_projection = tf_keras.layers.EinsumDense(
          '...x,xy->...y',
          output_shape=hidden_size,
          bias_axes='y',
          kernel_initializer=tf_utils.clone_initializer(initializer),
          name='embedding_projection')

    self._transformer_layers = []
    self._attention_mask_layer = layers.SelfAttentionMask(
        name='self_attention_mask')
    self._num_layers = num_layers
    for i in range(num_layers):
      layer = layers.TransformerEncoderBlock(
          num_attention_heads=num_attention_heads,
          inner_dim=inner_dim,
          inner_activation=inner_activation,
          output_dropout=output_dropout,
          attention_dropout=attention_dropout,
          norm_first=norm_first,
          return_attention_scores=return_attention_scores,
          kernel_initializer=tf_utils.clone_initializer(initializer),
          name='transformer/layer_%d' % i)
      self._transformer_layers.append(layer)

    self._pooler_layer = tf_keras.layers.Dense(
        units=hidden_size,
        activation='tanh',
        kernel_initializer=tf_utils.clone_initializer(initializer),
        name='pooler_transform')

    self._config = {
        'vocab_size': vocab_size,
        'hidden_size': hidden_size,
        'num_layers': num_layers,
        'num_attention_heads': num_attention_heads,
        'max_sequence_length': max_sequence_length,
        'type_vocab_size': type_vocab_size,
        'inner_dim': inner_dim,
        'inner_activation': tf_utils.serialize_activation(
            activation, use_legacy_format=True
        ),
        'output_dropout': output_dropout,
        'attention_dropout': attention_dropout,
        'initializer': tf_utils.serialize_initializer(
            initializer, use_legacy_format=True
        ),
        'output_range': output_range,
        'embedding_width': embedding_width,
        'embedding_layer': embedding_layer,
        'norm_first': norm_first,
        'with_dense_inputs': with_dense_inputs,
        'return_attention_scores': return_attention_scores,
    }
    if with_dense_inputs:
      self.inputs = dict(
          input_word_ids=tf_keras.Input(shape=(None,), dtype=tf.int32),
          input_mask=tf_keras.Input(shape=(None,), dtype=tf.int32),
          input_type_ids=tf_keras.Input(shape=(None,), dtype=tf.int32),
          dense_inputs=tf_keras.Input(
              shape=(None, embedding_width), dtype=tf.float32),
          dense_mask=tf_keras.Input(shape=(None,), dtype=tf.int32),
          dense_type_ids=tf_keras.Input(shape=(None,), dtype=tf.int32),
      )
    else:
      self.inputs = dict(
          input_word_ids=tf_keras.Input(shape=(None,), dtype=tf.int32),
          input_mask=tf_keras.Input(shape=(None,), dtype=tf.int32),
          input_type_ids=tf_keras.Input(shape=(None,), dtype=tf.int32))

  def call(self, inputs):
    word_embeddings = None
    if isinstance(inputs, dict):
      word_ids = inputs.get('input_word_ids')
      mask = inputs.get('input_mask')
      type_ids = inputs.get('input_type_ids')
      word_embeddings = inputs.get('input_word_embeddings', None)

      dense_inputs = inputs.get('dense_inputs', None)
      dense_mask = inputs.get('dense_mask', None)
      dense_type_ids = inputs.get('dense_type_ids', None)
    else:
      raise ValueError('Unexpected inputs type to %s.' % self.__class__)

    if word_embeddings is None:
      word_embeddings = self._embedding_layer(word_ids)

    if dense_inputs is not None:
      mask = tf.concat([mask, dense_mask], axis=1)

    embeddings = self._get_embeddings(word_ids, type_ids, word_embeddings,
                                      dense_inputs, dense_type_ids)
    embeddings = self._embedding_norm_layer(embeddings)
    embeddings = self._embedding_dropout(embeddings)

    if self._embedding_projection is not None:
      embeddings = self._embedding_projection(embeddings)

    attention_mask = self._attention_mask_layer(embeddings, mask)

    encoder_outputs = []
    attention_outputs = []
    x = embeddings
    for i, layer in enumerate(self._transformer_layers):
      transformer_output_range = None
      if i == self._num_layers - 1:
        transformer_output_range = self._output_range
      x = layer([x, attention_mask], output_range=transformer_output_range)
      if self._config['return_attention_scores']:
        x, attention_scores = x
        attention_outputs.append(attention_scores)
      encoder_outputs.append(x)

    last_encoder_output = encoder_outputs[-1]
    first_token_tensor = last_encoder_output[:, 0, :]
    pooled_output = self._pooler_layer(first_token_tensor)

    output = dict(
        sequence_output=encoder_outputs[-1],
        pooled_output=pooled_output,
        encoder_outputs=encoder_outputs)
    if self._config['return_attention_scores']:
      output['attention_scores'] = attention_outputs
    return output

  def get_embedding_table(self):
    return self._embedding_layer.embeddings

  def get_embedding_layer(self):
    return self._embedding_layer

  def get_config(self):
    return dict(self._config)

  @property
  def transformer_layers(self):
    """List of Transformer layers in the encoder."""
    return self._transformer_layers

  @property
  def pooler_layer(self):
    """The pooler dense layer after the transformer layers."""
    return self._pooler_layer

  @classmethod
  def from_config(cls, config, custom_objects=None):
    if 'embedding_layer' in config and config['embedding_layer'] is not None:
      warn_string = (
          'You are reloading a model that was saved with a '
          'potentially-shared embedding layer object. If you contine to '
          'train this model, the embedding layer will no longer be shared. '
          'To work around this, load the model outside of the Keras API.')
      print('WARNING: ' + warn_string)
      logging.warn(warn_string)

    return cls(**config)

  def _get_embeddings(self, word_ids: tf.Tensor, type_ids: tf.Tensor,
                      word_embeddings: Optional[tf.Tensor],
                      dense_inputs: Optional[tf.Tensor],
                      dense_type_ids: Optional[tf.Tensor]) -> tf.Tensor:
    if word_embeddings is None:
      word_embeddings = self._embedding_layer(word_ids)

    if dense_inputs is not None:
      # Concat the dense embeddings at sequence end.
      word_embeddings = tf.concat([word_embeddings, dense_inputs], axis=1)
      type_ids = tf.concat([type_ids, dense_type_ids], axis=1)

    type_embeddings = self._type_embedding_layer(type_ids)

    # absolute position embeddings.
    position_embeddings = self._position_embedding_layer(word_embeddings)
    return word_embeddings + position_embeddings + type_embeddings


@tf_keras.utils.register_keras_serializable(package='Text')
class BertEncoder(tf_keras.Model):
  """Bi-directional Transformer-based encoder network.

  This network implements a bi-directional Transformer-based encoder as
  described in "BERT: Pre-training of Deep Bidirectional Transformers for
  Language Understanding" (https://arxiv.org/abs/1810.04805). It includes the
  embedding lookups and transformer layers, but not the masked language model
  or classification task networks.

  The default values for this object are taken from the BERT-Base implementation
  in "BERT: Pre-training of Deep Bidirectional Transformers for Language
  Understanding".

  *Note* that the network is constructed by
  [Keras Functional API](https://keras.io/guides/functional_api/).

  Args:
    vocab_size: The size of the token vocabulary.
    hidden_size: The size of the transformer hidden layers.
    num_layers: The number of transformer layers.
    num_attention_heads: The number of attention heads for each transformer. The
      hidden size must be divisible by the number of attention heads.
    max_sequence_length: The maximum sequence length that this encoder can
      consume. If None, max_sequence_length uses the value from sequence length.
      This determines the variable shape for positional embeddings.
    type_vocab_size: The number of types that the 'type_ids' input can take.
    inner_dim: The output dimension of the first Dense layer in a two-layer
      feedforward network for each transformer.
    inner_activation: The activation for the first Dense layer in a two-layer
      feedforward network for each transformer.
    output_dropout: Dropout probability for the post-attention and output
      dropout.
    attention_dropout: The dropout rate to use for the attention layers within
      the transformer layers.
    initializer: The initialzer to use for all weights in this encoder.
    output_range: The sequence output range, [0, output_range), by slicing the
      target sequence of the last transformer layer. `None` means the entire
      target sequence will attend to the source sequence, which yields the full
      output.
    embedding_width: The width of the word embeddings. If the embedding width is
      not equal to hidden size, embedding parameters will be factorized into two
      matrices in the shape of ['vocab_size', 'embedding_width'] and
      ['embedding_width', 'hidden_size'] ('embedding_width' is usually much
      smaller than 'hidden_size').
    embedding_layer: An optional Layer instance which will be called to generate
      embeddings for the input word IDs.
    norm_first: Whether to normalize inputs to attention and intermediate dense
      layers. If set False, output of attention and intermediate dense layers is
      normalized.
    dict_outputs: Whether to use a dictionary as the model outputs.
    return_all_encoder_outputs: Whether to output sequence embedding outputs of
      all encoder transformer layers. Note: when the following `dict_outputs`
      argument is True, all encoder outputs are always returned in the dict,
      keyed by `encoder_outputs`.
    return_attention_scores: Whether to add an additional output containing the
      attention scores of all transformer layers. This will be a list of length
      `num_layers`, and each element will be in the shape [batch_size,
      num_attention_heads, seq_dim, seq_dim].
  """

  def __init__(
      self,
      vocab_size,
      hidden_size=768,
      num_layers=12,
      num_attention_heads=12,
      max_sequence_length=512,
      type_vocab_size=16,
      inner_dim=3072,
      inner_activation=lambda x: tf_keras.activations.gelu(x, approximate=True),
      output_dropout=0.1,
      attention_dropout=0.1,
      initializer=tf_keras.initializers.TruncatedNormal(stddev=0.02),
      output_range=None,
      embedding_width=None,
      embedding_layer=None,
      norm_first=False,
      dict_outputs=False,
      return_all_encoder_outputs=False,
      return_attention_scores: bool = False,
      **kwargs):
    if 'sequence_length' in kwargs:
      kwargs.pop('sequence_length')
      logging.warning('`sequence_length` is a deprecated argument to '
                      '`BertEncoder`, which has no effect for a while. Please '
                      'remove `sequence_length` argument.')

    # Handles backward compatible kwargs.
    if 'intermediate_size' in kwargs:
      inner_dim = kwargs.pop('intermediate_size')

    if 'activation' in kwargs:
      inner_activation = kwargs.pop('activation')

    if 'dropout_rate' in kwargs:
      output_dropout = kwargs.pop('dropout_rate')

    if 'attention_dropout_rate' in kwargs:
      attention_dropout = kwargs.pop('attention_dropout_rate')

    activation = tf_keras.activations.get(inner_activation)
    initializer = tf_keras.initializers.get(initializer)

    word_ids = tf_keras.layers.Input(
        shape=(None,), dtype=tf.int32, name='input_word_ids')
    mask = tf_keras.layers.Input(
        shape=(None,), dtype=tf.int32, name='input_mask')
    type_ids = tf_keras.layers.Input(
        shape=(None,), dtype=tf.int32, name='input_type_ids')

    if embedding_width is None:
      embedding_width = hidden_size

    if embedding_layer is None:
      embedding_layer_inst = layers.OnDeviceEmbedding(
          vocab_size=vocab_size,
          embedding_width=embedding_width,
          initializer=tf_utils.clone_initializer(initializer),
          name='word_embeddings')
    else:
      embedding_layer_inst = embedding_layer
    word_embeddings = embedding_layer_inst(word_ids)

    # Always uses dynamic slicing for simplicity.
    position_embedding_layer = layers.PositionEmbedding(
        initializer=tf_utils.clone_initializer(initializer),
        max_length=max_sequence_length,
        name='position_embedding')
    position_embeddings = position_embedding_layer(word_embeddings)
    type_embedding_layer = layers.OnDeviceEmbedding(
        vocab_size=type_vocab_size,
        embedding_width=embedding_width,
        initializer=tf_utils.clone_initializer(initializer),
        use_one_hot=True,
        name='type_embeddings')
    type_embeddings = type_embedding_layer(type_ids)

    embeddings = tf_keras.layers.Add()(
        [word_embeddings, position_embeddings, type_embeddings])

    embedding_norm_layer = tf_keras.layers.LayerNormalization(
        name='embeddings/layer_norm', axis=-1, epsilon=1e-12, dtype=tf.float32)

    embeddings = embedding_norm_layer(embeddings)
    embeddings = (tf_keras.layers.Dropout(rate=output_dropout)(embeddings))

    # We project the 'embedding' output to 'hidden_size' if it is not already
    # 'hidden_size'.
    if embedding_width != hidden_size:
      embedding_projection = tf_keras.layers.EinsumDense(
          '...x,xy->...y',
          output_shape=hidden_size,
          bias_axes='y',
          kernel_initializer=tf_utils.clone_initializer(initializer),
          name='embedding_projection')
      embeddings = embedding_projection(embeddings)
    else:
      embedding_projection = None

    transformer_layers = []
    data = embeddings
    attention_mask = layers.SelfAttentionMask()(data, mask)
    encoder_outputs = []
    attention_outputs = []
    for i in range(num_layers):
      transformer_output_range = None
      if i == num_layers - 1:
        transformer_output_range = output_range
      layer = layers.TransformerEncoderBlock(
          num_attention_heads=num_attention_heads,
          inner_dim=inner_dim,
          inner_activation=inner_activation,
          output_dropout=output_dropout,
          attention_dropout=attention_dropout,
          norm_first=norm_first,
          return_attention_scores=return_attention_scores,
          kernel_initializer=tf_utils.clone_initializer(initializer),
          name='transformer/layer_%d' % i)
      transformer_layers.append(layer)
      data = layer([data, attention_mask],
                   output_range=transformer_output_range)
      if return_attention_scores:
        data, attention_scores = data
        attention_outputs.append(attention_scores)
      encoder_outputs.append(data)

    last_encoder_output = encoder_outputs[-1]
    # Applying a tf.slice op (through subscript notation) to a Keras tensor
    # like this will create a SliceOpLambda layer. This is better than a Lambda
    # layer with Python code, because that is fundamentally less portable.
    first_token_tensor = last_encoder_output[:, 0, :]
    pooler_layer = tf_keras.layers.Dense(
        units=hidden_size,
        activation='tanh',
        kernel_initializer=tf_utils.clone_initializer(initializer),
        name='pooler_transform')
    cls_output = pooler_layer(first_token_tensor)

    outputs = dict(
        sequence_output=encoder_outputs[-1],
        pooled_output=cls_output,
        encoder_outputs=encoder_outputs,
    )
    if return_attention_scores:
      outputs['attention_scores'] = attention_outputs

    if dict_outputs:
      super().__init__(
          inputs=[word_ids, mask, type_ids], outputs=outputs, **kwargs)
    else:
      cls_output = outputs['pooled_output']
      if return_all_encoder_outputs:
        encoder_outputs = outputs['encoder_outputs']
        outputs = [encoder_outputs, cls_output]
      else:
        sequence_output = outputs['sequence_output']
        outputs = [sequence_output, cls_output]
      if return_attention_scores:
        outputs.append(attention_outputs)
      super().__init__(  # pylint: disable=bad-super-call
          inputs=[word_ids, mask, type_ids],
          outputs=outputs,
          **kwargs)

    self._pooler_layer = pooler_layer
    self._transformer_layers = transformer_layers
    self._embedding_norm_layer = embedding_norm_layer
    self._embedding_layer = embedding_layer_inst
    self._position_embedding_layer = position_embedding_layer
    self._type_embedding_layer = type_embedding_layer
    if embedding_projection is not None:
      self._embedding_projection = embedding_projection

    config_dict = {
        'vocab_size': vocab_size,
        'hidden_size': hidden_size,
        'num_layers': num_layers,
        'num_attention_heads': num_attention_heads,
        'max_sequence_length': max_sequence_length,
        'type_vocab_size': type_vocab_size,
        'inner_dim': inner_dim,
        'inner_activation': tf_utils.serialize_activation(
            activation, use_legacy_format=True
        ),
        'output_dropout': output_dropout,
        'attention_dropout': attention_dropout,
        'initializer': tf_utils.serialize_initializer(
            initializer, use_legacy_format=True
        ),
        'output_range': output_range,
        'embedding_width': embedding_width,
        'embedding_layer': embedding_layer,
        'norm_first': norm_first,
        'dict_outputs': dict_outputs,
        'return_attention_scores': return_attention_scores,
    }
    # pylint: disable=protected-access
    self._setattr_tracking = False
    self._config = config_dict
    self._setattr_tracking = True
    # pylint: enable=protected-access

  def get_embedding_table(self):
    return self._embedding_layer.embeddings

  def get_embedding_layer(self):
    return self._embedding_layer

  def get_config(self):
    return self._config

  @property
  def transformer_layers(self):
    """List of Transformer layers in the encoder."""
    return self._transformer_layers

  @property
  def pooler_layer(self):
    """The pooler dense layer after the transformer layers."""
    return self._pooler_layer

  @classmethod
  def from_config(cls, config, custom_objects=None):
    if 'embedding_layer' in config and config['embedding_layer'] is not None:
      warn_string = (
          'You are reloading a model that was saved with a '
          'potentially-shared embedding layer object. If you contine to '
          'train this model, the embedding layer will no longer be shared. '
          'To work around this, load the model outside of the Keras API.')
      print('WARNING: ' + warn_string)
      logging.warn(warn_string)

    return cls(**config)