File size: 24,127 Bytes
5672777
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Funnel Transformer network."""
# pylint: disable=g-classes-have-attributes

import math
from typing import Any, Callable, Optional, Sequence, Union

from absl import logging
import numpy as np
import tensorflow as tf, tf_keras

from official.modeling import tf_utils
from official.nlp.modeling import layers

_Initializer = Union[str, tf_keras.initializers.Initializer]
_Activation = Union[str, Callable[..., Any]]

_MAX = 'max'
_AVG = 'avg'
_TRUNCATED_AVG = 'truncated_avg'

_transformer_cls2str = {
    layers.TransformerEncoderBlock: 'TransformerEncoderBlock',
    layers.ReZeroTransformer: 'ReZeroTransformer'
}

_str2transformer_cls = {
    'TransformerEncoderBlock': layers.TransformerEncoderBlock,
    'ReZeroTransformer': layers.ReZeroTransformer
}

_approx_gelu = lambda x: tf_keras.activations.gelu(x, approximate=True)


def _get_policy_dtype():
  try:
    return tf_keras.mixed_precision.global_policy().compute_dtype or tf.float32
  except AttributeError:  # tf1 has no attribute 'global_policy'
    return tf.float32


def _pool_and_concat(mask, unpool_length: int, strides: Union[Sequence[int],
                                                              int],
                     axes: Union[Sequence[int], int]):
  """Pools the mask along a given axis with stride.

  It also skips first unpool_length elements.

  Args:
    mask: Tensor to be pooled.
    unpool_length: Leading elements to be skipped.
    strides: Strides for the given axes.
    axes: Axes to pool the Tensor.

  Returns:
    Pooled and concatenated Tensor.
  """
  # Wraps the axes as a list.
  if isinstance(axes, int):
    axes = [axes]
  if isinstance(strides, int):
    strides = [strides] * len(axes)
  else:
    if len(strides) != len(axes):
      raise ValueError('The lengths of strides and axes need to match.')
  # Bypass no pooling cases.
  if np.all(np.array(strides) == 1):
    return mask

  for axis, stride in zip(axes, strides):
    # Skips first `unpool_length` tokens.
    unpool_tensor_shape = [slice(None)] * axis + [slice(None, unpool_length)]
    unpool_tensor = mask[unpool_tensor_shape]
    # Pools the second half.
    pool_tensor_shape = [slice(None)] * axis + [
        slice(unpool_length, None, stride)
    ]
    pool_tensor = mask[pool_tensor_shape]
    mask = tf.concat((unpool_tensor, pool_tensor), axis=axis)
  return mask


def _create_fractional_pool_transform(sl: int, pool_factor: float):
  """Create pooling transform for fractional pooling factor."""

  assert pool_factor > 1.0, '`pool_factor` should be > 1.0.'

  psl = int(sl / pool_factor)
  gcd_ = math.gcd(sl, psl)
  # It is expected chunk_sl and chunk_psl are small integers.
  # The transform is built by tiling a [chunk_sl, chunk_psl] submatrix
  # gcd_ times. The submatrix sums to chunk_psl.
  chunk_sl = sl // gcd_
  chunk_psl = psl // gcd_
  num_one_entries = chunk_psl - 1
  num_frac_entries = chunk_sl - (chunk_psl - 1)

  # The transform is of shape [sl, psl].
  transform = np.zeros((sl, psl))
  for i in range(sl // chunk_sl):
    row_start = chunk_sl * i
    col_start = chunk_psl * i
    for idx in range(num_one_entries):
      transform[row_start + idx][col_start + idx] = 1.0
    for idx in range(num_frac_entries):
      transform[row_start + num_one_entries + idx][
          col_start + num_one_entries
      ] = (1.0 / num_frac_entries)

  return tf.constant(transform, dtype=_get_policy_dtype())


def _create_truncated_avg_transforms(
    seq_length: int, pool_strides: Sequence[int]
):
  """Computes pooling transforms.

  The pooling_transform is of shape [seq_length,
  seq_length//pool_stride] and
  pooling_transform[i,j] = 1.0/pool_stride if i//pool_stride == j
                           0.0                otherwise.
  It's in essense average pooling but truncate the final window if it
  seq_length % pool_stride != 0.
  For seq_length==6 and pool_stride==2, it is
  [[ 0.5, 0.0, 0.0 ],
   [ 0.5, 0.0, 0.0 ],
   [ 0.0, 0.5, 0.0 ],
   [ 0.0, 0.5, 0.0 ],
   [ 0.0, 0.0, 0.5 ],
   [ 0.0, 0.0, 0.5 ]]

  Args:
    seq_length: int, sequence length.
    pool_strides: Sequence of pooling strides for each layer.

  Returns:
    pooling_transforms: Sequence of pooling transforms (Tensors) for each layer.
  """

  pooling_transforms = []
  for pool_stride in pool_strides:
    if pool_stride == 1:
      pooling_transforms.append(None)
    else:
      pooled_seq_length = int(seq_length / pool_stride)
      if (1.0 * pool_stride).is_integer():
        pfac, sl, psl = pool_stride, seq_length, pooled_seq_length

        transform = [
            [1.0 if (i // pfac) == j else 0.0 for j in range(psl)]
            for i in range(sl)
        ]
        transform = (
            tf.constant(transform, dtype=_get_policy_dtype()) / pool_stride
        )
      else:
        transform = _create_fractional_pool_transform(seq_length, pool_stride)
      pooling_transforms.append(transform)
      seq_length = pooled_seq_length

  return pooling_transforms


def _create_truncated_avg_masks(input_mask: tf.Tensor,
                                pool_strides: Sequence[int],
                                transforms: Sequence[tf.Tensor]):
  """Computes attention masks.

  For [1,1,1,0,0]

  Args:
    input_mask: Tensor of shape [batch_size, seq_length].
    pool_strides: Sequence of pooling strides for each layer.
    transforms: Sequence of off-diagonal matrices filling with 0.0 and
      1/pool_stride.

  Returns:
    attention_masks: Sequence of attention masks for each layer.
  """

  def create_2d_mask(from_length, mask):
    return tf.einsum('F,BT->BFT', tf.ones([from_length], dtype=mask.dtype),
                     mask)

  attention_masks = []
  seq_length = tf.shape(input_mask)[-1]
  layer_mask = tf.cast(input_mask, dtype=_get_policy_dtype())
  for pool_stride, transform in zip(pool_strides, transforms):
    if pool_stride == 1:
      attention_masks.append(create_2d_mask(seq_length, layer_mask))
    else:
      pooled_seq_length = tf.cast(
          tf.cast(seq_length, tf.float32) / tf.cast(pool_stride, tf.float32),
          tf.int32,
      )
      attention_masks.append(create_2d_mask(pooled_seq_length, layer_mask))

      layer_mask = tf.cast(
          tf.einsum('BF,FT->BT', layer_mask, transform) > 0.0,
          dtype=layer_mask.dtype,
      )
      seq_length = pooled_seq_length
  del seq_length

  return attention_masks


@tf_keras.utils.register_keras_serializable(package='Text')
class FunnelTransformerEncoder(tf_keras.layers.Layer):
  """Funnel Transformer-based encoder network.

  Funnel Transformer Implementation of https://arxiv.org/abs/2006.03236.
  This implementation utilizes the base framework with Bert
  (https://arxiv.org/abs/1810.04805).
  Its output is compatible with `BertEncoder`.

  Args:
    vocab_size: The size of the token vocabulary.
    hidden_size: The size of the transformer hidden layers.
    num_layers: The number of transformer layers.
    num_attention_heads: The number of attention heads for each transformer. The
      hidden size must be divisible by the number of attention heads.
    max_sequence_length: The maximum sequence length that this encoder can
      consume. If None, max_sequence_length uses the value from sequence length.
      This determines the variable shape for positional embeddings.
    type_vocab_size: The number of types that the 'type_ids' input can take.
    inner_dim: The output dimension of the first Dense layer in a two-layer
      feedforward network for each transformer.
    inner_activation: The activation for the first Dense layer in a two-layer
      feedforward network for each transformer.
    output_dropout: Dropout probability for the post-attention and output
      dropout.
    attention_dropout: The dropout rate to use for the attention layers within
      the transformer layers.
    pool_type: Pooling type. Choose from ['max', 'avg', 'truncated_avg'].
    pool_stride: An int or a list of ints. Pooling stride(s) to compress the
      sequence length. If set to int, each layer will have the same stride size.
      If set to list, the number of elements needs to match num_layers.
    unpool_length: Leading n tokens to be skipped from pooling.
    initializer: The initialzer to use for all weights in this encoder.
    output_range: The sequence output range, [0, output_range), by slicing the
      target sequence of the last transformer layer. `None` means the entire
      target sequence will attend to the source sequence, which yields the full
      output.
    embedding_width: The width of the word embeddings. If the embedding width is
      not equal to hidden size, embedding parameters will be factorized into two
      matrices in the shape of ['vocab_size', 'embedding_width'] and
      ['embedding_width', 'hidden_size'] ('embedding_width' is usually much
      smaller than 'hidden_size').
    embedding_layer: An optional Layer instance which will be called to generate
      embeddings for the input word IDs.
    norm_first: Whether to normalize inputs to attention and intermediate dense
      layers. If set False, output of attention and intermediate dense layers is
      normalized. This does not apply to ReZero.
    transformer_cls: str or a keras Layer. This is the base TransformerBlock the
      funnel encoder relies on.
    share_rezero: bool. Whether to share ReZero alpha between the attention
      layer and the ffn layer. This option is specific to ReZero.
    with_dense_inputs: Whether to accept dense embeddings as the input.
  """

  def __init__(
      self,
      vocab_size: int,
      hidden_size: int = 768,
      num_layers: int = 12,
      num_attention_heads: int = 12,
      max_sequence_length: int = 512,
      type_vocab_size: int = 16,
      inner_dim: int = 3072,
      inner_activation: _Activation = _approx_gelu,
      output_dropout: float = 0.1,
      attention_dropout: float = 0.1,
      pool_type: str = _MAX,
      pool_stride: Union[int, Sequence[Union[int, float]]] = 2,
      unpool_length: int = 0,
      initializer: _Initializer = tf_keras.initializers.TruncatedNormal(
          stddev=0.02
      ),
      output_range: Optional[int] = None,
      embedding_width: Optional[int] = None,
      embedding_layer: Optional[tf_keras.layers.Layer] = None,
      norm_first: bool = False,
      transformer_cls: Union[
          str, tf_keras.layers.Layer
      ] = layers.TransformerEncoderBlock,
      share_rezero: bool = False,
      append_dense_inputs: bool = False,
      **kwargs
  ):
    super().__init__(**kwargs)

    if output_range is not None:
      logging.warning('`output_range` is available as an argument for `call()`.'
                      'The `output_range` as __init__ argument is deprecated.')

    activation = tf_keras.activations.get(inner_activation)
    initializer = tf_keras.initializers.get(initializer)

    if embedding_width is None:
      embedding_width = hidden_size

    if embedding_layer is None:
      self._embedding_layer = layers.OnDeviceEmbedding(
          vocab_size=vocab_size,
          embedding_width=embedding_width,
          initializer=tf_utils.clone_initializer(initializer),
          name='word_embeddings')
    else:
      self._embedding_layer = embedding_layer

    self._position_embedding_layer = layers.PositionEmbedding(
        initializer=tf_utils.clone_initializer(initializer),
        max_length=max_sequence_length,
        name='position_embedding')

    self._type_embedding_layer = layers.OnDeviceEmbedding(
        vocab_size=type_vocab_size,
        embedding_width=embedding_width,
        initializer=tf_utils.clone_initializer(initializer),
        use_one_hot=True,
        name='type_embeddings')

    self._embedding_norm_layer = tf_keras.layers.LayerNormalization(
        name='embeddings/layer_norm', axis=-1, epsilon=1e-12, dtype=tf.float32)

    self._embedding_dropout = tf_keras.layers.Dropout(
        rate=output_dropout, name='embedding_dropout')

    # We project the 'embedding' output to 'hidden_size' if it is not already
    # 'hidden_size'.
    self._embedding_projection = None
    if embedding_width != hidden_size:
      self._embedding_projection = tf_keras.layers.EinsumDense(
          '...x,xy->...y',
          output_shape=hidden_size,
          bias_axes='y',
          kernel_initializer=tf_utils.clone_initializer(initializer),
          name='embedding_projection')

    self._transformer_layers = []
    self._attention_mask_layer = layers.SelfAttentionMask(
        name='self_attention_mask')
    # Will raise an error if the string is not supported.
    if isinstance(transformer_cls, str):
      transformer_cls = _str2transformer_cls[transformer_cls]
    self._num_layers = num_layers
    for i in range(num_layers):
      layer = transformer_cls(
          num_attention_heads=num_attention_heads,
          intermediate_size=inner_dim,
          inner_dim=inner_dim,
          intermediate_activation=inner_activation,
          inner_activation=inner_activation,
          output_dropout=output_dropout,
          attention_dropout=attention_dropout,
          norm_first=norm_first,
          kernel_initializer=tf_utils.clone_initializer(initializer),
          share_rezero=share_rezero,
          name='transformer/layer_%d' % i)
      self._transformer_layers.append(layer)

    self._pooler_layer = tf_keras.layers.Dense(
        units=hidden_size,
        activation='tanh',
        kernel_initializer=tf_utils.clone_initializer(initializer),
        name='pooler_transform')
    if isinstance(pool_stride, int):
      # TODO(b/197133196): Pooling layer can be shared.
      pool_strides = [pool_stride] * num_layers
    else:
      if len(pool_stride) != num_layers:
        raise ValueError('Lengths of pool_stride and num_layers are not equal.')
      pool_strides = pool_stride

    is_fractional_pooling = False in [
        (1.0 * pool_stride).is_integer() for pool_stride in pool_strides
    ]
    if is_fractional_pooling and pool_type in [_MAX, _AVG]:
      raise ValueError(
          'Fractional pooling is only supported for'
          ' `pool_type`=`truncated_average`'
      )

    # TODO(crickwu): explore tf_keras.layers.serialize method.
    if pool_type == _MAX:
      pool_cls = tf_keras.layers.MaxPooling1D
    elif pool_type == _AVG:
      pool_cls = tf_keras.layers.AveragePooling1D
    elif pool_type == _TRUNCATED_AVG:
      # TODO(b/203665205): unpool_length should be implemented.
      if unpool_length != 0:
        raise ValueError('unpool_length is not supported by truncated_avg now.')
    else:
      raise ValueError('pool_type not supported.')

    if pool_type in (_MAX, _AVG):
      self._att_input_pool_layers = []
      for layer_pool_stride in pool_strides:
        att_input_pool_layer = pool_cls(
            pool_size=layer_pool_stride,
            strides=layer_pool_stride,
            padding='same',
            name='att_input_pool_layer')
        self._att_input_pool_layers.append(att_input_pool_layer)

    self._max_sequence_length = max_sequence_length
    self._pool_strides = pool_strides  # This is a list here.
    self._unpool_length = unpool_length
    self._pool_type = pool_type
    self._append_dense_inputs = append_dense_inputs

    self._config = {
        'vocab_size': vocab_size,
        'hidden_size': hidden_size,
        'num_layers': num_layers,
        'num_attention_heads': num_attention_heads,
        'max_sequence_length': max_sequence_length,
        'type_vocab_size': type_vocab_size,
        'inner_dim': inner_dim,
        'inner_activation': tf_keras.activations.serialize(activation),
        'output_dropout': output_dropout,
        'attention_dropout': attention_dropout,
        'initializer': tf_keras.initializers.serialize(initializer),
        'output_range': output_range,
        'embedding_width': embedding_width,
        'embedding_layer': embedding_layer,
        'norm_first': norm_first,
        'pool_type': pool_type,
        'pool_stride': pool_stride,
        'unpool_length': unpool_length,
        'transformer_cls': _transformer_cls2str.get(
            transformer_cls, str(transformer_cls)
        ),
    }

    self.inputs = dict(
        input_word_ids=tf_keras.Input(shape=(None,), dtype=tf.int32),
        input_mask=tf_keras.Input(shape=(None,), dtype=tf.int32),
        input_type_ids=tf_keras.Input(shape=(None,), dtype=tf.int32))

  def call(self, inputs, output_range: Optional[tf.Tensor] = None):
    # inputs are [word_ids, mask, type_ids]
    word_embeddings = None
    if isinstance(inputs, (list, tuple)):
      logging.warning('List inputs to  %s are discouraged.', self.__class__)
      if len(inputs) == 3:
        word_ids, mask, type_ids = inputs
        dense_inputs = None
        dense_mask = None
        dense_type_ids = None
      elif len(inputs) == 6:
        word_ids, mask, type_ids, dense_inputs, dense_mask, dense_type_ids = (
            inputs
        )
      else:
        raise ValueError(
            'Unexpected inputs to %s with length at %d.'
            % (self.__class__, len(inputs))
        )
    elif isinstance(inputs, dict):
      word_ids = inputs.get('input_word_ids')
      mask = inputs.get('input_mask')
      type_ids = inputs.get('input_type_ids')
      word_embeddings = inputs.get('input_word_embeddings', None)

      dense_inputs = inputs.get('dense_inputs', None)
      dense_mask = inputs.get('dense_mask', None)
      dense_type_ids = inputs.get('dense_type_ids', None)
    else:
      raise ValueError('Unexpected inputs type to %s.' % self.__class__)

    if word_embeddings is None:
      word_embeddings = self._embedding_layer(word_ids)

    if dense_inputs is not None:
      # Allow concatenation of the dense embeddings at sequence end if requested
      # and `unpool_length`` is set as zero
      if self._append_dense_inputs:
        if self._unpool_length != 0:
          raise ValueError(
              'unpool_length is not supported by append_dense_inputs now.'
          )
        word_embeddings = tf.concat([word_embeddings, dense_inputs], axis=1)
        type_ids = tf.concat([type_ids, dense_type_ids], axis=1)
        mask = tf.concat([mask, dense_mask], axis=1)
      else:
        # Concat the dense embeddings at sequence begin so unpool_len can
        # control embedding not being pooled.
        word_embeddings = tf.concat([dense_inputs, word_embeddings], axis=1)
        type_ids = tf.concat([dense_type_ids, type_ids], axis=1)
        mask = tf.concat([dense_mask, mask], axis=1)
    # absolute position embeddings
    position_embeddings = self._position_embedding_layer(word_embeddings)
    type_embeddings = self._type_embedding_layer(type_ids)

    embeddings = tf_keras.layers.add(
        [word_embeddings, position_embeddings, type_embeddings])
    embeddings = self._embedding_norm_layer(embeddings)
    embeddings = self._embedding_dropout(embeddings)

    if self._embedding_projection is not None:
      embeddings = self._embedding_projection(embeddings)

    attention_mask = self._attention_mask_layer(embeddings, mask)

    encoder_outputs = []
    x = embeddings
    # TODO(b/195972228): attention_mask can be co-generated with pooling.
    if self._pool_type in (_MAX, _AVG):
      attention_mask = _pool_and_concat(
          attention_mask,
          unpool_length=self._unpool_length,
          strides=self._pool_strides[0],
          axes=[1])

      for i, layer in enumerate(self._transformer_layers):
        transformer_output_range = None
        if i == self._num_layers - 1:
          transformer_output_range = output_range

        # Bypass no pooling cases.
        if self._pool_strides[i] == 1:
          x = layer(
              [x, x, attention_mask], output_range=transformer_output_range
          )
        else:
          # Pools layer for compressing the query length.
          pooled_inputs = self._att_input_pool_layers[i](
              x[:, self._unpool_length:, :])
          query_inputs = tf.concat(
              values=(tf.cast(
                  x[:, :self._unpool_length, :],
                  dtype=pooled_inputs.dtype), pooled_inputs),
              axis=1)
          x = layer([query_inputs, x, attention_mask],
                    output_range=transformer_output_range)
        # Pools the corresponding attention_mask.
        if i < len(self._transformer_layers) - 1:
          attention_mask = _pool_and_concat(
              attention_mask,
              unpool_length=self._unpool_length,
              strides=[self._pool_strides[i + 1], self._pool_strides[i]],
              axes=[1, 2])
        encoder_outputs.append(x)
    elif self._pool_type == _TRUNCATED_AVG:
      # Compute the attention masks and pooling transforms.
      # Note we do not compute this in __init__ due to inference converter issue
      # b/215659399.
      pooling_transforms = _create_truncated_avg_transforms(
          self._max_sequence_length, self._pool_strides)
      attention_masks = _create_truncated_avg_masks(mask, self._pool_strides,
                                                    pooling_transforms)
      for i, layer in enumerate(self._transformer_layers):
        attention_mask = attention_masks[i]
        transformer_output_range = None
        if i == self._num_layers - 1:
          transformer_output_range = output_range
        # Bypass no pooling cases.
        if self._pool_strides[i] == 1:
          x = layer([x, x, attention_mask],
                    output_range=transformer_output_range)
        else:
          pooled_inputs = tf.einsum(
              'BFD,FT->BTD',
              tf.cast(x[:, self._unpool_length:, :], _get_policy_dtype()
                     ),  # extra casting for faster mixed computation.
              pooling_transforms[i])
          query_inputs = tf.concat(
              values=(tf.cast(
                  x[:, :self._unpool_length, :],
                  dtype=pooled_inputs.dtype), pooled_inputs),
              axis=1)
          x = layer([query_inputs, x, attention_mask],
                    output_range=transformer_output_range)
        encoder_outputs.append(x)

    last_encoder_output = encoder_outputs[-1]
    first_token_tensor = last_encoder_output[:, 0, :]
    pooled_output = self._pooler_layer(first_token_tensor)

    return dict(
        word_embeddings=word_embeddings,
        embedding_output=embeddings,
        sequence_output=encoder_outputs[-1],
        pooled_output=pooled_output,
        encoder_outputs=encoder_outputs)

  def get_embedding_table(self):
    return self._embedding_layer.embeddings

  def get_embedding_layer(self):
    return self._embedding_layer

  def get_config(self):
    return dict(self._config)

  @property
  def transformer_layers(self):
    """List of Transformer layers in the encoder."""
    return self._transformer_layers

  @property
  def pooler_layer(self):
    """The pooler dense layer after the transformer layers."""
    return self._pooler_layer

  @classmethod
  def from_config(cls, config, custom_objects=None):
    if 'embedding_layer' in config and config['embedding_layer'] is not None:
      warn_string = (
          'You are reloading a model that was saved with a '
          'potentially-shared embedding layer object. If you contine to '
          'train this model, the embedding layer will no longer be shared. '
          'To work around this, load the model outside of the Keras API.')
      print('WARNING: ' + warn_string)
      logging.warn(warn_string)

    return cls(**config)